Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét hai tam giác BNA và CLA, ta có:
∠ BNA = ∠ CLA = 90 °
góc A chung
Suy ra ∆ BNA đồng dạng ∆ CLA (g.g)
Suy ra: AL/AN = AC/AB ⇒ AL/AC = AN/AB
Xét hai tam giác ABC và ANL, ta có:
AL/AC = AN/AB
góc A chung
Suy ra ∆ ABC đồng dạng ∆ ANL (c.g.c)
a) Xét ΔABE và ΔACF có
Alà góc chung
AEB=AFC(=90^O)
=> ΔABE đồng dạng ΔACF (g.g)
=>AF/AE=AC/AB
=> AB/AE=AC/AF
XétΔAEF và ΔABC có
AB/AE=AC/AF
Và Agóc chung
Suy raΔAEF đồng dạngΔABC( c.g.c)
Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)
Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)
Suy từ giả thiết :
\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)
Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)
\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
\(\Rightarrow\Delta ABC\) là tam giác đều.