K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Xét hai tam giác BNA và CLA, ta có:

∠ BNA = CLA =  90 °

góc A chung

Suy ra ∆ BNA đồng dạng  ∆ CLA (g.g)

Suy ra: AL/AN = AC/AB ⇒ AL/AC = AN/AB

Xét hai tam giác ABC và ANL, ta có:

AL/AC = AN/AB

góc A chung

Suy ra ∆ ABC đồng dạng  ∆ ANL (c.g.c)

24 tháng 12 2018

a) Xét ΔABE  và ΔACF có

Alà góc chung

AEB=AFC(=90^O)

=> ΔABE đồng dạng ΔACF (g.g)

=>AF/AE=AC/AB

=> AB/AE=AC/AF

XétΔAEF và  ΔABC có

AB/AE=AC/AF

Và Agóc chung

Suy raΔAEF đồng dạngΔABC( c.g.c) 

24 tháng 10 2016

Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)

Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)

Suy từ giả thiết : 

\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)

Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

\(\Rightarrow\Delta ABC\) là tam giác đều.