Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
Một số tự nhiên ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ có 5 chữ số chia hết cho 3 khi tổng các chữ số của nó chia hết cho 3.
Nhận thấy một số tự nhiên thoả yêu cầu sẽ không đồng thời có mặt các chữ số 0 và 3.
Do đó ta chia làm 2 trường hợp:
TH1: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ không có chữ số 0.
Khi đó 5 chữ số còn lại có tổng của chúng chia hết cho 3, nên số số tự nhiên thoả mãn là 5! số.
TH2: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ không có chữ số 3 (khi đó ta còn 5 chữ số là 0; 1; 2; 4; 5 có tổng của chúng chia hết cho 3).
Suy ra trường hợp này ta có 4.4!4.4! số.
Vậy theo quy tắc cộng ta có tất cả 5!+4.4!=2165!+4.4!=216 số .