Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(g\left(x\right)=x^4-4x^3+4x^2+a\)
\(g'\left(x\right)=4x^3-12x^2+8x=0\Leftrightarrow4x\left(x^2-3x+2\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)
\(f\left(0\right)=f\left(2\right)=\left|a\right|\) ; \(f\left(1\right)=\left|a+1\right|\)
TH1: \(\left\{{}\begin{matrix}M=\left|a\right|\\m=\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\ge\left|a+1\right|\\\left|a\right|\le2\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{2}{3}\le a\le-\dfrac{1}{2}\\a\le-2\end{matrix}\right.\) \(\Rightarrow a=\left\{-3;-2\right\}\)
TH2: \(\left\{{}\begin{matrix}M=\left|a+1\right|\\m=\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a+1\right|\ge\left|a\right|\\\left|a+1\right|\le2\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le a\le-\dfrac{1}{3}\\a\ge1\end{matrix}\right.\) \(\Rightarrow a=\left\{1;2;3\right\}\)
Chọn D
Xét hàm số f(x) = x 4 - 4 x 3 + 4 x 2 + a trên đoạn [0;2], ta có:
trên đoạn
Vì
nên trên đoạn [0;2] giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là a+1, a
Suy ra nếu nếu
Khi đó
nên chọn
Khi đó nên chọn
Vậy có 4 giá trị a thỏa yêu cầu
+ Xét hàm số y= x4- 4x3+ 4x2+ a trên đoạn [ 0; 2].
Ta có đạo hàm y’ = 4x3-12x2+ 8x, y ' = 0
Khi đó; y( 0) = y( 2) = a; y( 1) = a+ 1
+ Nếu a≥ 0 thì M= a+ 1,m = a.
Để M ≤ 2m khi a≥ 1, suy ra a ∈ 1 ; 2 ; 3 thỏa mãn
+ Nếu a≤ - 1 thì M = a = - a , m = a + 1 = - a - 1 .
Để M≤ 2m thì a≤ -2, suy ra a a ∈ - 2 ; - 3
Vậy có 5 giá trị nguyên của a thỏa mãn yêu cầu.
Chọn B.
\(f'\left(x\right)=3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(f\left(-1\right)=-2;f\left(0\right)=2;f\left(2\right)=-2\)
\(\Rightarrow M=2;m=-2\Rightarrow P=6\)
Cả 4 đáp án đều sai (kiểm tra lại đề bài, có đúng là \(f\left(x\right)=x^3-3x^2+2\) hay không?)
Đáp án D
Xét hàm số .
;
Bảng biến thiên
Do nên suy ra .
Suy ra .
Nếu thì ,
.
Nếu thì ,
.
Do đó hoặc , do a nguyên và thuộc đoạn nên .
Xét hàm \(g\left(x\right)=3x^4-4x^3-12x^2+m\)
\(g'\left(x\right)=12x^3-12x^2-24x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)
\(g\left(-3\right)=m+243\) ; \(g\left(-1\right)=m-5\) ; \(g\left(0\right)=m\) ; \(g\left(2\right)=m-32\)
Xét phương trình: \(g\left(x\right)=0\Leftrightarrow3x^4-4x^3-12x^2=-m\)
Từ BBT ta thấy để pt đã cho có nghiệm trên \(\left[-3;2\right]\)
\(\Leftrightarrow-32\le-m\le243\Rightarrow-243\le m\le32\)
- Vậy với \(-243\le m\le32\Rightarrow b=0\)
Khi đó \(2b\ge a\) luôn luôn không thỏa mãn
- Với \(32< m< 2019\) \(\Rightarrow\left\{{}\begin{matrix}a=m+243\\b=m-32\end{matrix}\right.\)
\(2b\ge a\Leftrightarrow2m-64\ge m+243\Rightarrow m\ge307\)
\(\Rightarrow\) Trên khoảng này có \(2018-307+1=1712\) giá trị nguyên
- Với \(-2019< m< -243\) \(\Rightarrow\left\{{}\begin{matrix}a=-m+32\\b=-m-243\end{matrix}\right.\)
\(2b\ge a\Leftrightarrow-2m-486\ge-m+32\Leftrightarrow m\le-518\)
Trên đoạn này có \(2018-518+1=1501\) giá trị nguyên
Tổng cộng có \(1712+1501=3213\) giá trị nguyên
(Nếu như tất cả các từ khoảng - đoạn bạn sử dụng đều chính xác). Vì câu đầu tiên bạn dùng chữ "đoạn" nhưng lại sử dụng kí hiệu "khoảng" nên mình đành đoán nó là đoạn \(\left[-3;2\right]\) , đoạn cuối sử dụng kí hiệu khoảng nên đoán nó ko lấy 2 đầu mút