Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử f (x) là một đa thức của x.Nếu f (x) có 3 phần còn lại khi chia cho 2 (x-1) và 2f (x) có phần còn lại của -4 khi chia cho 3 ( x + 2) .Vì khi 3f (x) được chia cho 4 ( x 2 + x - 2 x2 + x-2), phần còn lại là ax + b, trong đó a và b là hằng số. Sau đó a + b = ...............
Mình sẽ giải bằng tiếng Việt cho dễ hiểu nhé :)
Đề bài : Cho \(f\left(x\right)=x^4+ax^3+b\) chia hết cho \(g\left(x\right)=x^2+1\) . Tính a + b
Theo đề , ta đặt \(f\left(x\right)=g\left(x\right).n\left(x\right)\) với \(n\left(x\right)=x^2+cx+d\)
Vậy thì : \(x^4+ax^3+b=\left(x^2+1\right).\left(x^2+cx+d\right)\)
\(\Leftrightarrow x^4+ax^3+b=x^4+cx^3+x^2\left(d+1\right)+cx+d\)
Sử dụng đồng nhất hệ thức, ta có a = c , d + 1 = 0 , c = 0 , b = d
Suy ra : a = 0 , b = -1
Vậy a + b = -1
Đa thức chia x-1 có ngiệm là 1 nên:
Thay x=1 vào đa thức chia ta có:
130+14-11975+1
=1+1-1+1
=2
Vậy số dư khi chia khi chia x30+x4-x1975+1 cho x-1 là 2