Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(12:\left\{400:\left[500-\left(125+25×7\right)\right]\right\}\)
\(12:\left\{400:\left[500-300\right]\right\}\)
\(12:2\)
\(6\)
b)\(\left[\left(7-3^3:3^2\right):2^2+99\right]-100\)
\(=\left[4:4+99\right]-100\)
\(=100-100\)
\(=0\)
\(c,3^2×\left[\left(5^2-3\right):11\right]-2^4+2×10^3\)
\(=9×2-16+2×10000\)
\(=18-16+20000\)
\(=20002\)
\(A=2+2^2+2^3+......+2^{1000}\Rightarrow2A=2^2+2^3+2^4+......+2^{1001}\)
\(\Rightarrow2A-A=A=2^{1001}-2=\left(....2\right)-2=\left(.....0\right)\)
\(B=1+3^2+3^4+.........+3^{100}\Rightarrow9B=3^2+3^4+3^6+......+3^{102}\)
\(\Rightarrow9B-B=8B=3^{102}-1\Rightarrow B=\frac{3^{102}-1}{8}=\frac{\left(.....8\right)}{8}\)
=> B có tận cùng là 1 hoặc 6 nhưng Tổng B gồm 51 số hạng lẻ
=> B có tận cùng là 1
\(a,\)Đặt \(A=1+2+2^2+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(b,\)Đặt \(B=5+5^3+5^5+...+5^{97}+5^{99}\)
\(\Rightarrow5^2B=5^3+5^5+...+5^{99}+5^{101}\)
\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{99}+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)
\(\Rightarrow24B=5^{101}-5\)
\(\Rightarrow B=\frac{5^{101}-5}{24}\)
*) \(A=2^2-2^4+2^6-2^8+....+2^{98}-2^{100}\)
\(\Leftrightarrow4A=2^4-2^6+2^8-2^{10}+....+2^{100}-2^{101}\)
\(\Leftrightarrow5A=2^2-2^{101}\)
\(\Leftrightarrow A=\frac{2^2-2^{101}}{5}\)
*) \(B=3-3^3+3^5-3^7+...+3^{79}-3^{99}\)
làm tương tự
Nhiều thế bạn
Đăng từ từ thôi chứ
Đăng nhiều thế này làm sao mà xong kịp được
=>B+C=338050
nhé bạn
hok tốt
giút gọn b=....
c=....
cơ mà