Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)
để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy.....
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)
Ta có :
\(S=1.2+2.3+...+49.50\)
\(\Leftrightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+49.50.\left(51-48\right)\)
\(\Leftrightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50\)
\(\Leftrightarrow3S=49.50.51\)
\(\Leftrightarrow S=\frac{49.50.51}{3}=41650\)
S=1 . 2 + 2.3+3.4+.....+49.100
3S=1.2.3+2.3.3+3.4.3+....+49.50.3
3S=1.2.3+2.3.(4-1)+3.4(5-2)+....+49.50(51-48)
3S=1.2.3-2.3.4+2.3.4-2.3.1+......+48.49.50+49.50.51
3S=49.50.51
S=49.50.51 / 3
S=41650
\(\)\(A=2^0+2^1+2^2+2^3+...+2^{2012}\\ A=1+2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2010}+2^{2011}+2^{2012}\right)\\ A=3+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2010}\cdot\left(1+2+2^2\right)\\ A=3+2^2\cdot\left(1+2+4\right)+2^5\cdot\left(1+2+4\right)+...+2^{2010}\cdot\left(1+2+4\right)\\ A=3+2^2\cdot7+2^5\cdot7+...+2^{2010}\cdot7\\ A=3+7\cdot\left(2^2+2^5+...+2^{2010}\right)\\ \)
\(\left(x-3\right).\left(x-2015\right)< 0\)
\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu
\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)
\(\Rightarrow3< x< 2015\)
\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)
( ko bt đúng hay sai nx )
thám tử
\(\left(x-3\right)\left(x-2015\right)< 0\)
Với mọi \(x\in R\) thì:
\(x-2015< x-3\)
Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)
Nên \(3< x< 2015\)
Ta có : \(\left\{\begin{matrix}Q=-\left(x-7\right)^2-6\\-\left(x-7\right)^2\le0\\-6=-6\end{matrix}\right.\)
\(\Rightarrow Q=-\left(x-7\right)^2-6\le0-6=-6\)
Vậy GTLN của \(Q=-\left(x-7\right)^2-6\) là \(-6\)
Ta có :
\(2015^{2014}=\left(\overline{......5}\right)\)
\(2014^{2015}=\left(2014^4\right)^{503}.\left(2014^3\right)=\left(\overline{.....6}\right).\left(\overline{.....4}\right)=\left(\overline{.....4}\right)\)
\(2015^{2014}-2014^{2015}=\left(\overline{......5}\right)-\left(\overline{......4}\right)=\left(\overline{......1}\right)\)
Vậy biểu thức có chữ số tận cùng là 1
Ta có:
- \(2015^{2014}\) có chữ số tận cùng là 5 (Các số có tận cùng là 5 khi nâng lên lũy thừa bậc mấy chữ số tận cùng cũng không thay đổi)
- \(2014^{2015}\) có chữ số tận cùng là 4 (Các số có tận cùng là 4 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng không thay đổi)
~> \(2015^{2014}-2014^{2015}=5-4=1\)
Vậy, chữ số tận cùng của \(2015^{2014}-2014^{2015}\) là 1
---
Chọn đáp án này đi :)
\(\dfrac{-15}{2}=\dfrac{-3}{\left|-4x+5\right|}\)
\(\Leftrightarrow\left|4x-5\right|=\dfrac{6}{15}=\dfrac{2}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=\dfrac{2}{5}\\4x-5=-\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{27}{5}\\4x=\dfrac{23}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{27}{20}\\x=\dfrac{23}{20}\end{matrix}\right.\)
Đk nữa anh ơi