K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

a)\(x^2+7x+12\)

\(=x^2+x+6x+6\)

\(=x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

4 tháng 8 2016

a) x2 + 7x + 12 = x2 + 3x + 4x + 12

= (x2 + 3x) + (4x + 12)

= x(x + 3) + 4(x + 3)

= (x + 3)(x + 4)

vậy.....

\(a,4x^2-12xy+9y^2=\left(2x-3y\right)^2\)

\(b,x^2-9x+20=x^2-4x-5x+20\)

\(=x\left(x-4\right)-5\left(x-4\right)\)

\(=\left(x-4\right)\left(x-5\right)\)

\(c,x^2+7x+12=x^2+3x+4x+12\)

\(=x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x+4\right)\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

6 tháng 9 2020

a) \(x^2-5x+6=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\)

b)\(3x^2+9x-30=3x^2-6x+15x-30=3\left(x-2\right)\left(x+5\right)\)

c)\(x^2-7x+12=x^2-3x-4x+12=\left(x-3\right)\left(x-4\right)\)

d)\(x^2-7x+10=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\)

6 tháng 9 2020

a) \(x^2-5x+6=x^2-2x-3x+6=\left(x^2-2x\right)-\left(3x-6\right)\)

\(=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

b) \(3x^2+9x-30=3\left(x^2+3x-10\right)=3\left(x^2-2x+5x-10\right)\)

\(=3\left[\left(x^2-2x\right)+\left(5x-10\right)\right]=3\left[x\left(x-2\right)+5\left(x-2\right)\right]\)

\(=3\left(x-2\right)\left(x+5\right)\)

c) \(x^2-7x+12=x^2-3x-4x+12=\left(x^2-3x\right)-\left(4x-12\right)\)

\(=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)

d) \(x^2-7x+10=x^2-2x-5x+10=\left(x^2-2x\right)-\left(5x-10\right)\)

\(=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)

9 tháng 7 2019

#)Giải :

a)\(12x^2+7x-12=\left(12x^2-9x\right)+\left(16x-12\right)=3x\left(4x-3\right)+4\left(4x-3\right)=\left(3x+4\right)\left(4x-3\right)\)

9 tháng 7 2019

\(12x^2+16x-9x-12\)

\(=4x.\left(3x+4\right)-3.\left(3x+4\right)\)

\(=\left(3x+4\right).\left(4x-3\right)\)

24 tháng 7 2016

1 ) 

=x3-2x2+6x2-12x+5x-10

=x2(x-2)+6x(x-2)+5(x-2)

=(x-2)(x2+6x+5)

=(x-2)(x2+x+5x+5)

=(x-2)[x(x+1)+5(x+1)]

=(x-2)(x+1)(x+5)

toàn mũ lớn hơn 3 khó làm quá!!!! >.<

653645645645645676746784734746856876897684737547

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

29 tháng 9 2015

sao mà giải hết đống bài này dc chứ

11 tháng 11 2016

a)\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=\left(x^2+x+4\right)\left(x^2+x\right)-12\)

Đặt \(t=x^2+x\) ta có:

\(\left(t+4\right)t-12=t^2+4t-12\)

\(=\left(t-2\right)\left(t+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

b)\(x^8+x+1\)

\(=x^8-x^2+\left(x^2+x+1\right)\)

\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x^2\left(x^3+1\right)\left(x-1\right)+1\right]\)