">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

15 bộ bàn học có số học sinh là:

15x2=30 (học sinh)

Có tất cả số học sinh đang ngồi học là:

30x8=240 (học sinh)

Đáp số: 240 học sinh

Giải :

15 bộ bàn ghế có :

15 x 2 = 30 ( học sinh )

Số học sinh đang ngồi học là :

30 x 8 = 240 ( học sinh )

   Đáp số :.........

#Jun'z

~ HT ~

9 tháng 8 2016

Đk:\(3x+1\ge0\)

\(\left(1\right)\Leftrightarrow\left(2x-3\right)^2=-\sqrt{3x+1}+x+4\left(2\right)\)

Đặt \(\sqrt{3x+1}=-\left(2y-3\right)\Rightarrow\left(2y-3\right)^2=3x+1\left(y\le\frac{3}{2}\right)\)

\(\left(2\right)\Leftrightarrow\left(2x-3\right)^2=2y+x+1\)

Ta có hệ:

\(\begin{cases}\left(2x-3\right)^2=2y+x+1\\\left(2y-3\right)^2=3x+1\end{cases}\)

\(\Leftrightarrow\left(x-y\right)\left(2x+2y-5=0\right)\)

\(\Leftrightarrow x=y;x=\frac{5}{2}-y\).Thay vào hệ trên là ok

2)Đặt \(\sqrt[3]{81x-8}=3y-2\Rightarrow81x-8=27y^3-54y^2+36y-8\)

\(\Rightarrow y^3-2y^2+\frac{4}{3}y=3x\)

Khi đó ta có hệ sau: 

\(\begin{cases}3y-2=x^3-2x^2+\frac{4}{3}x-2\\y^3-2y^2+\frac{4}{3}y=3x\end{cases}\)\(\Leftrightarrow\begin{cases}x^3-2x^2+\frac{4}{3}x=3y\\y^3-2y^2+\frac{4}{3}y=3x\end{cases}\)

Đối xứng nhé, ta chỉ cần  trừ vế theo vế hai phương trình của hệ là xong

 

11 tháng 8 2016

what

14 tháng 10 2017

câu 1:

a2+b2+c2+42 = 2a+8b+10c

<=> a2-2a+1+b2 -8b+16+c2-10c+25=0

<=> (a-1)2+(b-4)2+(c-5)2=0

<=>a=1 và b=4 và c=5

=> a+b+c = 10

14 tháng 10 2017

ta có 2(a2+b2)=5ab

<=> 2a2+2b2-5ab=0

<=> 2a2-4ab-ab+2b2=0

<=> 2a(a-2b)-b(a-2b)=0

<=> (a-2b)(2a-b)=0

<=> a=2b(thỏa mãn)

hoặc b=2a( loại vì a>b)

với a=2b =>P=5b/5b=1

5 tháng 11 2016

Cau 1:

Đkxđ: 2x-4\(\ge\)0

(ngoặc nhọn) 3-x> 0

khi và chỉ khi : x\(\ge\)2 và x<3

5 tháng 11 2016

Mình hỏi câu 4 mà bạn

Bài 3.7

a: Thay x=2 vào y=3x+2, ta được: 

\(y=3\cdot2+2=8\)

Thay y=2 vào y=-3x+4, ta được:

-3x+4=2

=>-3x=-2

=>x=2/3

Vì (d) đi qua (2;8) và (2/3;2) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=8\\\dfrac{2}{3}a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{9}{2}\\b=-1\end{matrix}\right.\)

b: Tọa độ giao điểm của hai đường \(y=-\dfrac{1}{2}x+1;y=3x+5\) là:

\(\left\{{}\begin{matrix}3x+5=-\dfrac{1}{2}x+1\\y=3x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{2}x=-4\\y=3x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{8}{7}\\y=-\dfrac{24}{7}+5=\dfrac{11}{7}\end{matrix}\right.\)

Vì (d)//y=1/2x nên a=1/2

Vậy: (d): y=1/2x+b

Thay x=-8/7 và y=11/7 vào (d), ta được:

\(b-\dfrac{1}{2}\cdot\dfrac{8}{7}=\dfrac{11}{7}\)

hay b=15/7

11 tháng 11 2016

Đặt \(m=a^2,n=b^2\)

Ta đưa bài toán về dạng tìm GTLN và GTNN của \(A=m-3mn+2n\)

Khi đó ta suy ra từ giả thiết :

\(\left(m+n+1\right)^2+3mn+1=4m+5n\)

\(\Rightarrow m-3mn+2n=\left(m+n+1\right)^2+1-3m-3n\)

\(=\left(m^2+n^2+2mn+2m+2n+1\right)+1-3n-3m\)

\(=m^2+n^2+2mn-m-n+2\)

\(=m^2+m\left(2n-1\right)+n^2-n+2\)

\(=m^2+m\left(2n-1\right)+\frac{\left(2n-1\right)^2}{4}+\frac{7}{4}\)

\(=\left(m+\frac{2n-1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Hay \(A\ge\frac{7}{4}\) . Đẳng thức xảy ra khi \(m=\frac{1-2n}{2}\)

Tới đây bạn tự suy ra nhé ^^