Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kết quả rất lẻ : \(\frac{-16y^2\sqrt{x^7y}+3x^3y\sqrt{xy^3}+500x^2\sqrt{y^5}}{\sqrt{2}x^2}\)
a) \(\frac{\sqrt{2x^3}}{\sqrt{8x}}=\sqrt{\frac{2x^3}{8x}}=\frac{1}{2}x\)
b) \(\left(3-\sqrt{5}\right)\left(x+\sqrt{5}\right)=3^2-\left(\sqrt{5}\right)^2=9-5=4\)
c) \(\sqrt{\frac{3x^2y^4}{27}}=0\)
\(y\ne0\)
Thì \(\sqrt{\frac{3x^2y^4}{27}}=\frac{1}{3}xy^2\)
e) \(\frac{y}{x^2}\sqrt{\frac{36x^4}{y^2}}=\frac{y}{x^2}.\frac{6x^2}{\left|y\right|}=\frac{6y}{\left|y\right|}\)
Vì y < 0 nên \(\left|y\right|=-y\)
Vậy \(\frac{6y}{\left|y\right|}=\frac{6y}{-y}=-6\)
f) \(\frac{\sqrt{99999999}}{\sqrt{11111111}}=\sqrt{\frac{99999999}{11111111}}=\sqrt{9}=3\)
a) \(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}=\frac{2\sqrt{x}}{x-1}\)( x > 0 ; x ≠ 1 )
b) \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)( x > 0 ; x ≠ 4 )
a) Với \(x>0\)và \(x\ne1\)ta có:
\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Với \(x>0\)và \(x\ne4\)ta có:
\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)-2\left(\sqrt{x}+2\right)+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)
a)\(\frac{\sqrt{63y^3}}{\sqrt{7}y}=\frac{\sqrt{7\cdot3^2\cdot y^2\cdot y}}{\sqrt{7}y}=\frac{\sqrt{7}\cdot\sqrt{3^2}\cdot\sqrt{y^2}\cdot\sqrt{y}}{\sqrt{7}y}=\frac{\sqrt{7}\cdot3\cdot y\cdot\sqrt{y}}{\sqrt{7}y}=3\sqrt{y}\)
b)\(\frac{\sqrt{48x^3}}{\sqrt{3x^5}}=\frac{\sqrt{4^2\cdot3\cdot x^2\cdot x}}{\sqrt{3\cdot x^2\cdot x^3}}=\frac{\sqrt{4^2}\cdot\sqrt{3}\cdot\sqrt{x^3}}{\sqrt{3}\cdot\sqrt{x^2}\cdot\sqrt{x^3}}=\frac{4}{x}\)
c)\(\frac{\sqrt{45mn^2}}{\sqrt{20m}}=\frac{\sqrt{5\cdot3^2\cdot m\cdot n^2}}{\sqrt{5\cdot2^2\cdot m}}=\frac{\sqrt{5}\cdot\sqrt{3^2}\cdot\sqrt{m}\cdot\sqrt{n^2}}{\sqrt{5}\cdot\sqrt{2^2}\cdot\sqrt{m}}=\frac{3\left|n\right|}{2}\)
d)\(\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\frac{\sqrt{4^2\cdot a^2\cdot a^2\cdot b^2\cdot b^2\cdot b^2}}{\sqrt{4^2\cdot8\cdot a^2\cdot a^2\cdot a^2\cdot b^2\cdot b^2\cdot b^2}}=\frac{\sqrt{4^2}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}}{\sqrt{4^2}\cdot\sqrt{8}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}}=\frac{4\cdot a^2\cdot b^3}{4\cdot\sqrt{8}\cdot\left|a\right|^3\cdot b^3}=\frac{a^2}{\sqrt{8}\left|a\right|^3}\)
\(2y+\sqrt{\frac{63y^3}{7y}}=2y+\sqrt{9y^2}=2y+3y=5y\)
\(\frac{3\sqrt{3\left(a-2\right)^2}}{27}=\frac{\sqrt{3\left(a-2\right)^2}}{9}=\frac{\sqrt{3}\left(2-a\right)}{\left(\sqrt{3}\right)^4}=\frac{2-a}{3\sqrt{3}}\)
\(x-4+\sqrt{16-8x+x^2}=x-4+x-4=2x-8\)
k mình đi mình sẽ giúp, mình rất cần người như cậu Ngân
Bạn phải giúp thì mình mới k chứ nhỉ ??