Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Người ta nói tần số của một số A trong một dãy số A1, A2, …,An là số lần xuất hiện của số A trong dãy A1,A2,…,An.
Ví dụ: Cho dãy số 2 3 4 5 1 3 3 4 3
Tần số của số 2 là 1. Tần số của số 3 là 4.
Cho một file văn bản có tên TANSO.INP và có cấu trúc như sau:
Dòng 1: Chứa số nguyên N dương (0<N<=10000)
N dòng tiếp theo: mỗi dòng chứa một số nguyên Ai (0<Ai<101), các số ghi cách nhau ít nhất một dấu cách trống.
Hãy viết chương trình đọc file trên và tìm tần số xuất hiện của các số trong N số đã cho. Yêu cầu chương trình chạy không quá 2 giây.
Kết quả xuất ra file văn bản TANSO.OUT gồm nhiều dòng. Mỗi dòng chứa 2 số Ai và Ki ghi cách nhau ít nhất một dấu cách trống. Trong đó Ai là số thuộc dãy, Ki là tần số của số Ai. Ai được xếp tăng dần từ đầu đến cuối file.
Bài làm :
A) Gọi A :" số cách chọn ra 6 số"
chọn 6 số trong 45 số có \(C^6_{45}=8145060\) cách
=> n (A) = 8145060 cách
B) Gọi B : " chọn ra 6 số mà tổng của 6 số đó là 30 "
Các tổ hợp 6 số có tổng bằng 30 là = { ( 1;2;3;4;5;15); (1;2;3;4;6;14) ; ( 1;2;3;4;7;13) ;(1;2;3;4;8;12) ;( 1;2;3;4;9;11);(1;2;3;5;6;13) ;( 1;2;3;5;7;12) ;(1;2;3;5;8;11) ; (1;2;3;5;9;10) ; (1;2;3;6;7;12) ; (1;2;3;6;8;11);(1;2;3;6;9;10) ; (1;2;3;7;8;9);(1;2;4;5;6;12) ; (1;2;4;5;7;11) ;(1;2;4;5;8;10) ;(1;3;4;5;6;11) ;(1;3;4;5;7;10) ;(1;3;4;5;8;9) ; (2;3;4;5;6;10);(2;3;4;5;7;9) }
=> có 21 tổ hợp thỏa mãn đề bài
=> n(B) = 21
C) Gọi C :" 6 số chọn ra có tổng bằng 138 "
các tổ hợp 6 số chọn ra có tổng bằng 138 là { ( 1;2;3;43;44;45 ) ; ( 1;2;4;42;44;45) ; (1;2;5;41;44;45) ;(1;2;5;42;43;45) ;(1;2;6; 40;44;45) ;(1;2;6;41;43 ;45) ; ( 1;2;7;39;44;45) ;(1;2;7;40;43;45) ;(1;2;8;38;44;45) ;(1;2;8;39 ;43;45);(1;2;9;37;44;45) ;(1;2;9;38;43;45) ;(1;2;10;36;44;45) ;(1;2;10;37;43;45) ;(1;2;11;35;44;45) ;(1;2;11;36;43;45) ;(1;2;12; 34 ;44;45) ;(1;2;12;35;43;45) ;(1;2;13;33;44;45) ;(1;2;13;34;43;45) ;(1;2;14;32;44;45) ;(1;2;14;33;43;45);(1;2;15;31;44;45) ;(1;2;15;32;43;45);(1;2;16;30;44;45) ;(1;2;16;31;43;45);(1;2;17;29;44;45) ;(1;2;17;30;43;45) ;(1;2;18;28;44;45) ;(1;2;18;29;43;45);(1;2;19;27;44;45) ;(1;2;19;28;43;45) ;(1;2;20;26;44;45) ;(1;2;20;27;43;45) ; (1;2;21;25;44;45) ;(1;2;21;26;43;45) ;(1;2;22;24;44;45) ;(1;2;22;25;43;45) ; (1;2;23;24;43;45) ... xin lỗi đi tổ hợp có 1;2 còn nhiều lắm .. nghỉ nghỉ .. kể ra có mà tới mai ... ng ra đề quá biến thái :v
Cho dãy số từ 1 đến 45, chọn ra 6 số:
A) tất cả các số lượng các biến: \(C^6_{45}\).
B) Có bao nhiêu biến có tổng bằng 30.
C) Có bao nhiêu biến có tổng bằng 138.
a) ĐK: \(\cos x\ne0\)( vì tan x = sinx/cosx nên cos x khác 0)
<=> \(x\ne\frac{\pi}{2}+k\pi\); k thuộc Z
TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z
b) ĐK: \(1+\cos2x\ne0\Leftrightarrow\cos2x\ne-1\Leftrightarrow2x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\); k thuộc Z
=> TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z
c) ĐK: \(\hept{\begin{cases}\cot x-\sqrt{3}\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\frac{\pi}{6}+k\pi\text{}\text{}\\x\ne l\pi\end{cases}}\); k,l thuộc Z
=>TXĐ: ....
d) ĐK: \(1-2\sin^2x\ne0\Leftrightarrow\cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
=> TXĐ:...
Giới hạn đã cho hữu hạn nên \(a=-1\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(b-x\right)^2-\left(x^2-6x+2\right)}{b-x+\sqrt{x^2-6x+2}}=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(6-2b\right)x+b^2-2}{-x+\sqrt{x^2-6x+2}+b}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{6-2b+\dfrac{b^2-2}{x}}{-1-\sqrt{1-\dfrac{6}{x}+\dfrac{2}{x^2}}+\dfrac{b}{x}}=\dfrac{6-2b}{-2}=5\)
\(\Rightarrow b=8\)
Cả 4 đáp án đều sai, số lớn hơn là 8
a) A=1998.1998
B=1996.2000=(1998-2)(1998+2)=1998.1998-4
=> A>B(A-B=1998.1998-(1998.1998-4)=4)
b) A=2000.2000
B=1990.2010=(2000-10)(2000+10)=2000.2000-100
=> A>B(A-B=2000.2000-(2000.2000-100)=100)