Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) có P đồng thời là trung điểm của AB và NM nên ANBM là hình bình hành
b)dễ cm CBNM là hình bình hành
nên MN=BC
c)để ANBM vuông thì ANBM có 1 góc vuông
ta chọn góc đó là góc <AMB
khi đó BM đồng thời là đường thời là đường cao và trung tuyến nên ABC cân tại B
vậy ABC là tam giác vuông cân tại B
c) giống câu a ta dễ cm BMCK là hình bình hành
suy ra BK // BC
mà BN // BC
nên B,K,N thẳng hàng
có BN=AM (ANBM là hình bình hành)
BK=CM (BMCK là hình bình hành)
AM=CM ( M là trung điểm AC)
suy ra BN=BK và B,K,N thẳng hàng
nên N và K đối xứng qua B
(4x - 5)2 + (4x - 5)(x2 - x - 2) + (x2 - x - 2)2 = (x2 + 3x - 7)2
<=> (4x - 5)2 + 2(4x - 5)(x2 - x - 2) + (x2 - x - 2)2 - (x2 + 3x - 7)2 = (4x - 5)(x2 - x - 2)
<=> (4x - 5 + x2 - x - 2)2 - (x2 + 3x - 7)2 = (4x - 5)(x2 - x + 2x - 2)
<=> (x2 + 3x - 7)2 - (x2 + 3x - 7) = (4x - 5)[x(x - 1) + 2(x - 1)]
<=> (4x - 5)(x - 1)(x + 2) = 0
<=> \(\left[{}\begin{matrix}4x-5=0\\x-1=0\\x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=1\\x=-2\end{matrix}\right.\)
Vậy S = {- 2 ; 1 ; 1,25}
ĐS: 1,25
\(\left\{{}\begin{matrix}a=4x-5\\b=x^2-x-2\\a+b=x^2+3x-7\end{matrix}\right.\) nên bổ xungchức căn lề phải cho cái này!
\(\Leftrightarrow a^2+ab+b^2=\left(a+b\right)^2\)
\(\Leftrightarrow ab=2ab\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\dfrac{5}{4}\\\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\end{matrix}\right.\)
Mình làm 1 bài thôi nhé
Bài 5
\(a.1-2y+y^2=\left(1-y\right)^2\)
\(b.\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x-4\right)\left(x+6\right)\)
\(c.1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(d.27+27x+9x^2+x^3=3^3+3.3^3.x+3.3.x^2+x^3=\left(3+x\right)^3\)
\(f.8x^3-12x^2y+6xy-y^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y-y^3=\left(2x-y\right)^3\)
Bài 4 :
a, \(x^3+3x^2-x-3=x^2\left(x+3\right)-\left(x+3\right)=\left(x+1\right)\left(x-1\right)\left(x+3\right)\)
b, bạn xem lại đề nhé
c, \(x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
d, \(5x+5-x^2+1=5\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(6-x\right)\)
= ((x-y)\(^2\))\(^7\) = (x-y)\(^{14}\)
cho x=y =1 \(\Rightarrow\)(1-1)\(^{14}\)=0
vậy tổng các hệ số =0
\(a.=x\)
\(b.=y^3\)
\(c.=3xy\)
\(d.=-\frac{5}{2}a\)
\(e.=3yz\)
\(f.=-3xy\)