K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

a: Xét ΔOCA và ΔOCB có 

OC chung

\(\widehat{AOC}=\widehat{BOC}\)

OA=OB

Do đó: ΔOCA=ΔOCB

b: Xét ΔOHA và ΔOHB có 

OA=OB

\(\widehat{AOH}=\widehat{BOH}\)

Do đó: ΔOHA=ΔOHB

Suy ra: HA=HB

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(1)

Ta có: CB=CA

nên C nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OC là đường trung trực của AB

hay OC\(\perp\)AB

Bài 1: 

a: Xét ΔCAB và ΔCDE có 

CA=CD

\(\widehat{ACB}=\widehat{DCE}\)

CB=CE

Do đó: ΔCAB=ΔCDE

b: Ta có: ΔCAB=ΔCDE

nên \(\widehat{CAB}=\widehat{CDE}\)

mà \(\widehat{CAB}=80^0\)

nên \(\widehat{CDE}=80^0\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DE

31 tháng 10 2017
x 10 -2 -3 1 0 1.21 0.25
\(^{x^2}\) 100 4 9 1 0 1.4641

0.0625

1.44 -25 \(\dfrac{4}{9}\)
2.0736 625 \(\dfrac{16}{81}\)

okhehe

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

20 tháng 4 2017

Xét tam giác ABC trên hình vẽ ta có:

AB = AC = 6 ô vuông (với điều kiện tất cả ô vuông đều bằng nhau).

=> Tam giác ABC là tam giác cân và cân tại A.

20 tháng 10 2017

BT1.

Ta có: \(2009^{20}=2009^{10}\times2009^2\)\(20092009^{10}=2009^{10}\times10001^{10}\)

Rõ ràng \(2009^2< 10001^{10}\\ \Rightarrow2009^{10}\times2009^2< 2009^{10}\times10001^{10}\\ \Rightarrow2009^{20}< 20092009^{10}\left(đpcm\right)\)

BT9. Bn xem lại đề bài đi. \(x^2+x+1\) luôn lớn hơn 0 mà bn.

BT3.

Giả sử \(M\in N\)

Nên:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{y+x+t}\in N\\\dfrac{z}{z+t+y}\in N\\\dfrac{t}{t+z+x}\in N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮y+x+t\\z⋮z+t+y\\t⋮t+z+x\end{matrix}\right.\)

\(x,y,z,t\in N\)*\(\Rightarrow x,y,z,t>0\)\(\Rightarrow\left\{{}\begin{matrix}x>x+y+z\\y>x+y+t\\z>y+z+t\\t>x+z+t\end{matrix}\right.\)(vô lí)

Vậy rõ ràng điều giả sử là vô lí. Nên \(M\notin N\left(đpcm\right)\)

Mình chỉ giúp đc đến đây thôi, mong bn thông cảm

Ngoài ra, chúc bn học tốt nhébanhbanhbanhbanhbanh

20 tháng 10 2017

Bài toán 2.

Ta có: \(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+....+\dfrac{2}{2007}+\dfrac{1}{2008}\)

\(=\dfrac{2009-1}{1}+\dfrac{2009-2}{2}+\dfrac{2009-3}{3}+...+\dfrac{2009-2008}{2008}\)

\(=2009-1+\dfrac{2009}{2}-1+\dfrac{2009}{3}-1+....+\dfrac{2009}{2008}-1\)

\(=2009+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{....1}{2008}\right)-1.2008\)

\(=\left(2009-2008\right)+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)

\(=1+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)

\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)

=\(2009.A\)

Do đó, tỉ số \(\dfrac{A}{B}=\dfrac{A}{2009.A}=\dfrac{1}{2009}\)

18 tháng 4 2017

a) Ta có :

\(\dfrac{x}{y}=\dfrac{1}{9}=\dfrac{2}{18}=\dfrac{3}{27}=\dfrac{4}{36}=\dfrac{5}{45}\)

Vậy x và y là hai đại lượng tỉ lệ thuận.

b) Ta có \(\dfrac{6}{72}\ne\dfrac{9}{90}\)nên x và y không tỉ lệ thuận.