Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
(x+y+z)^2=x^2+y^2+z^2+2 (xy+yz+zx )
<=>x^2+y^2+z^2=0
<=>x=y=z=0
a) Mình làm lại , mk thiếu dấu
Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)
Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
x + y + z ≥ xy + yz + zx
⇔ x + y + z - xy - yz - xz ≥ 0 ( *)
Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)
Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)
Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :
( x - 1)( y - 1)( z - 1) ≤ 0
⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0
⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)
Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)
Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)
Từ ( * ; **) ⇒ đpcm
Cho \(x+y+z=0.\)
Chứng minh rằng :
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+3xyz=0\)
Ta có : \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+3xyz\)
\(=\left[xy\left(x+y\right)+xyz\right]+\left[yz\left(y+z\right)+xyz\right]+\left[xz\left(x+z\right)+xyz\right]\)
\(=xy\left(x+y+z\right)+yz\left(y+z+x\right)+xz\left(x+z+y\right)\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)=0\) (Vì x + y + z = 0 )
\(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Từ đó ta có:\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+3xyz\)
\(\Rightarrow xy\left(-z\right)+yz.\left(-x\right)+xz.\left(-y\right)+3xyz\)
\(\Rightarrow-3xyz+3xyz=0\)
\(\Rightarrowđpcm\)
Vì 0xy+yz+xz=0.Nên:X,y,z đều bằng 0 và bằng nhau.