Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5-2.2\sqrt{5}+4}-\sqrt{5+2.2\sqrt{5}+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\sqrt{5}-2=-4\)
g)\(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(=\dfrac{\sqrt{3}+\sqrt{9+2.3.\sqrt{2}+2}-\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}}{\sqrt{2}+\sqrt{5+2.\sqrt{5}.1+1}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}}\)
\(=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\dfrac{\sqrt{3}+3+\sqrt{2}-\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\left(\sqrt{5}+1\right)-\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\dfrac{3}{1}=3\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)\(=\sqrt{9-2\cdot2\cdot\sqrt{5}}-\sqrt{9+2\cdot2\cdot\sqrt{5}}\)\(=\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}\)\(=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|\)\(=\left(2-\sqrt{5}\right)-\left(2+\sqrt{5}\right)\)\(=2-\sqrt{5}-2-\sqrt{5}=-2\sqrt{5}\)
\(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\dfrac{\sqrt{3}+\sqrt{11+2\cdot3\cdot\sqrt{2}}-\sqrt{5+2\cdot\sqrt{2}\cdot\sqrt{3}}}{\sqrt{2}+\sqrt{6+2\cdot\sqrt{5}}-\sqrt{7+2\cdot\sqrt{2}\cdot\sqrt{5}}}=\dfrac{\sqrt{3}+\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}+1}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}}=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}=\dfrac{\sqrt{3}+\left|3+\sqrt{2}\right|-\left|\sqrt{2}+\sqrt{3}\right|}{\sqrt{2}+\left|\sqrt{5}+1\right|-\left|\sqrt{2}+\sqrt{5}\right|}=\dfrac{\sqrt{3}+3+\sqrt{2}-\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{5}+1-\sqrt{2}-\sqrt{5}}=3\)
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
Bài 8 :
a ) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
BĐVT ta được : \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\)
Biến đổi xong ta được : VT = VP
Vậy \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
. . A B O H C D I
a) Vì AD là tiếp tuyến của (O)
=> \(AD\perp AB\)
=> \(\widehat{DAB}=90^o\)
CÓ: OA=OB=OC(=R)
=> CO là tiếp tuyến của ΔABC
Mà: \(CO=\frac{1}{1}AB\left(cmt\right)\)
=> ΔABC vuông tại C
=> \(AC\perp BC\)
Xét ΔABD vuông tại A(cmt), mà AC là đường cao(cmt)
=> \(BC\cdot BD=AB^2\) ( theo hệ thức trong tam giác vuông)
=> \(BC\cdot BD=\left(2\cdot OB\right)^2=4R^2\)
b) Có: OA=OC(cmt)
=> ΔOAC cân tại O
=> \(\widehat{ACO}=\widehat{CAO}\)
Xét ΔACD vuông tại C(cmt)
mà: CI là tiếp tuyến ứng vs cạnh AD
=> IC=IA
=> ΔIAC cân tại I
=> \(\widehat{IAC}=\widehat{ICA}\)
Có: \(\widehat{IAC}+\widehat{CAO}=\widehat{DAB}=90^o\)
=> \(\widehat{ICA}+\widehat{ACO}=90^o\)
Hay: \(\widehat{ICO}=90^o\)
=> IC là tiếp tuyến của (O)
Phần c đề sai
6.
a. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=2\)
\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|=2\) (*)
Xét \(x< 1\):
(*) \(\Leftrightarrow1-x+3-x=2\)
\(\Leftrightarrow-2x=-2\)
\(\Leftrightarrow x=1\left(ktm\right)\)
Xét \(1\le x< 3\) :
(*) \(\Leftrightarrow x-1+3-x=2\)
\(\Leftrightarrow2=2\left(vô.số.nghiệm\right)\)
Xét \(x\ge3\) :
(*) \(\Leftrightarrow x-1+x-3=2\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy pt đã cho có nghiệm thỏa \(1\le x\le3\).
b. \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (ĐK: \(1\ge x\ge\dfrac{1}{2}\))
\(\Leftrightarrow x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-\sqrt{\left(2x-1\right)^2}}=2\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)^2}=2-2x\)
\(\Leftrightarrow\left|x-1\right|=1-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1-x\\x-1=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\0=0\left(vô.số.nghiệm\right)\end{matrix}\right.\)
Vậy pt đã cho có nghiệm thỏa \(1\ge x\ge\dfrac{1}{2}\)