K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Đối với lớp 8 cái này khó; giải theo cách bình thường nha

+) Giả sử \(abc\) không chia hết cho 3 \(\Rightarrow a;b;c\) không chia hết cho 3

\(\Rightarrow a^2;b^2;c^2\)chia 3 dư 1 \(\Rightarrow a^2+b^2\)  chia 3 dư 2

Mà \(c^2\) chia 3 dư 1 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai

Vậy \(abc⋮3\) (1)

+) Giả sử  \(abc\) không chia hết cho 4 \(\Rightarrow a;b;c\) không chia hết cho 4

\(\Rightarrow\)\(a^2;b^2;c^2\)chia 4 dư 1 \(\Rightarrow a^2+b^2\) chia 4 dư 2

Mà \(c^2\)chia 4 dư 1 nên \(a^2+b^2\ne c^2\)=> Điều giả sử sai

Vậy \(abc⋮4\)(2)

+) +) Giả sử  \(abc\) không chia hết cho 5 \(\Rightarrow a;b;c\) không chia hết cho 5

\(\Rightarrow a^2;b^2;c^2\) chia 5 dư 1;4 \(\Rightarrow a^2+b^2\) chia hết cho 5

Mà \(c^2\)chia 5 dư 1;4 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai

Vậy \(abc⋮5\)(3)

Mà (3;4;5) = 1 nên từ (1);(2);(3) \(\Rightarrow abc⋮60\)(đpcm)

14 tháng 2 2018

Ta có;  60 = 3.4.5

Đặt M = abc

Nếu a, b, c đều không chia hết cho 3 => a2, b2 và cchia hết cho 3 đều dư 1=> a2 khác  b+ c2 .Do đó có ít nhất 1 số chia hết cho 3. Vậy M  \(⋮\)3

Nếu a, b, c đều không chia hết cho 5 =>  a2, b2 và c2 chia 5 dư 1 hoặc 4

=>  b2 + c2 chia 5 thì dư 2; 0 hoặc 3.

=> a2 khác  b2 + c2. Do đó có ít nhất 1 số chia hết cho 5. Vậy M \(⋮\) 5

Nếu a, b, c là các số lẻ =>  b2 và c2 chia hết cho 4 dư 1.

=>  b2 + c2 = 4 dư 1 =>  a2 khác b2 + c2

Do đó 1 trong 2 số a, b phải là số chẵn

Giả sử b là số chẵn

Nếu c là số chẵn =>  M  \(⋮\) 4

Nếu c là số lẻ mà a2 = b2 + c2 =>  a là số lẻ

\(\Rightarrow b^2=\left(a-c\right)\left(a+b\right)\Rightarrow\left(\frac{b}{2}\right)^2=\left(\frac{a+c}{2}\right)\left(\frac{a-c}{2}\right)\)

\(\Rightarrow\frac{b}{2}\)chẵn \(\Rightarrow b⋮4\Rightarrow M⋮4\)

Vậy M = abc \(⋮\)3 . 4. 5 = 60

9 tháng 10 2019

Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

14 tháng 8 2020

Ta có : a2 + b2 = c2

=> a2 + b2 - c2 = 0

=> a2 + b2 + 2ab - c2 = 2ab

=> (a + b)2 - c2 = 2ab

=> (a + b - c)(a + b + c) = 2ab

=> (a + b - c)/2 . (a + b + c) = ab

=> ab \(⋮\)a + b + c (đpcm)

14 tháng 8 2020

Bạn Xyz làm sai rồi nhé !!!!!

Chỗ:    \(\left(\frac{a+b-c}{2}\right)\left(a+b+c\right)=ab\)

Đoạn này để có:    \(ab⋮\left(a+b+c\right)\)     thì bạn phải lập luận     \(\frac{a+b-c}{2}\inℤ\)     đã nhé !!!!!! 

(NẾU BẠN SUY LUÔN RA     \(ab⋮\left(a+b+c\right)\)   LÀ SAI RỒI)

=> Cần phải chứng minh:     \(a+b-c⋮2\) 

Có: \(a^2+b^2=c^2\)

=> Nếu a chẵn; b chẵn thì c cũng chẵn        =>    \(a+b-c⋮2\) 

Nếu a chẵn; b lẻ thì c lẻ    =>   b - c chẵn     =>   \(a+b-c⋮2\)

Nếu a lẻ; b lẻ thì c chẵn    =>   a + b chẵn    =>   \(a+b-c⋮2\)

Nếu a lẻ; b chẵn thì c lẻ    =>   a - c chẵn     =>   \(a+b-c⋮2\)

VẬY QUA 4 TRƯỜNG HỢP THÌ TA =>   \(\frac{a+b-c}{2}\inℤ\)

Khi đó thì      \(ab⋮\left(a+b+c\right)\)

TA CÓ ĐPCM !!!!!

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)

9 tháng 10 2019

Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

16 tháng 5 2020

ddd

*) Nếu a,b đều ko chia hết cho 3 ⇒a2+b2≡2(mod3)⇒a2+b2≡2(mod3)

Nên c2≡2(mod3)c2≡2(mod3) (Vô lí) 

Nên Tồn tại ab⋮3ab⋮3

*) Nếu a,b đều ko chia hết cho 4, tương tự như trên ⇒ab⋮4⇒ab⋮4

Vậy từ 2 TH trên có đpcmcdvm

15 tháng 12 2017

\(a^3-a+b^3-b+c^3-c+d^3-d\)

\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\) chia hết cho 3

Mà \(a^3+b^3=2\left(c^3+d^3\right)\) nên \(a^3+b^3+c^3+d^3=3\left(c^3+d^3\right)\) chia hết cho 3

\(\Rightarrow-a-b-c-d⋮3\Rightarrow a+b+c+d⋮3\)