K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

1) Áp dụng bất đẳng thức AM-GM :

\(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\ge2\sqrt{\frac{a^2+b^2}{ab}\cdot\frac{ab}{a^2+b^2}}=2\sqrt{1}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a^2+b^2-ab=0\)

3 tháng 5 2019

1) Anh phương làm lạ zậy?

Đặt \(x=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\) (do a.b > 0 nên ta không cần viết 2|ab| thay cho 2ab)

Khi đó bài toán trở thành: Tìm giá trị nhỏ nhất của biểu thức \(P=x+\frac{1}{x}\) (với \(x\ge2\))

Ta có: \(P=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+\frac{3x}{4}\ge1+\frac{3.2}{4}=\frac{5}{2}\)

Vậy P min là 5/2 khi x = 2

12 tháng 5 2018

Gọi i là đại diện cho các số từ 1 đến 2011

ĐKXĐ:  \(a_i\ne0\left(i=1,2,3,..,2011\right)\)  

Xét \(a_i=1\)  Ta có: \(\frac{1}{a^{11}_i}=1>\frac{2011}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}>\frac{2011}{2048}\left(loai\right)\) 

Xét \(a_i\ge2\) Ta có: \(\frac{1}{a^{11}_i}\le\frac{1}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}\le\frac{2011}{2048}\)

Dấu "=" xảy ra khi \(a_i=2\) 

Thay vào ta có: 

\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\) 

\(\Rightarrow2M-M=\left(1+\frac{1}{2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\) 

\(\Rightarrow M=1-\frac{1}{2^{2011}}\)

4 tháng 3 2020

ĐK: \(x,y\ne0\)

\(pt\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{3}{2}\)

Do vai trò của x,y như nhau, không mất tính tổng quát, giả sử: \(x\ge y\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\Rightarrow\frac{3}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Rightarrow3y\le4\Rightarrow y=1\)(vì \(y\inℕ^∗\))

Lúc đó thì \(1+\frac{1}{x}=\frac{3}{2}\Rightarrow\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)(tm)

Vậy có hai cặp số tự nhiên (x;y) thỏa mãn \(\left(1;2\right);\left(2;1\right)\)

4 tháng 3 2020

Vậy còn x<y thì sao???

7 tháng 6 2019

nhìn nó dài nhưng chỉ cần lập luận vài bước thui 

Điều kiện : \(x_1,x_2,x_3,...,x_{2000}\ne0.\)

Từ (1) suy ra \(2x_1x_2=x_2^2+1>0\Rightarrow x_1\)và    \(x_2\)cùng dấu.

Tương tự ta cũng có:

Từ (2) suy ra \(x_2\)và \(x_3\)cùng dấu 

.....................................................

Từ (1999) suy ra  \(x_{1999}\)và \(x_{2000}\)cùng dấu

Từ (2000) suy ra \(x_{2000}\)và \(x_1\)cùng dấu

Như vậy : các ẩn số \(x_1,x_2,...,x_{2000}\)cùng dấu .

Mặt khác nếu \(\left(x_1,x_2,...,x_{2000}\right)\)là một nghiệm thì \(\left(-x_1,-x_2,...,-x_{2000}\right)\)cũng là nghiệm . Do đó chỉ cần xét \(x_1,x_2,...,x_{2000}>0\).

Khi đó : \(2x_1=x_2+\frac{1}{x_2}\ge2\Rightarrow x_1\ge1\Rightarrow\frac{1}{x_1}\le1\)

              \(2x_2=x_3+\frac{1}{x_3}\ge2\Rightarrow x_2\ge1\Rightarrow\frac{1}{x_2}\le1\)

...............................................................................................

Tương tự , ta có: \(x_{2000}\ge1\Rightarrow\frac{1}{x_{2000}}\le1\)

Suy ra : \(\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\le x_1+x_2+...+x_{2000}\)

Mặt khác; nếu cộng từng vế 2000 phương trình của hệ , ta có:

\(x_1+x_2+...+x_{2000}=\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\)

Dấu '=' xảy ra khi và chỉ khi \(x_1=x_2=...=x_{2000}=1\)

Tóm lại hệ đã cho có 2 nghiệm :

\(\left(x_1,x_2,...,x_{2000}\right)=\left(1;1;...;1\right),\left(-1;-1;...;-1\right).\)

14 tháng 7 2023

\(\sqrt{x_1^2-1^2}+2\sqrt{x^2_2-2^2}+...+100\sqrt{x_{100}^2-100^2}=\dfrac{1}{2}\left(x_1^2+x^2_2+...+x_{100}^2\right)\)

\(\Leftrightarrow2\sqrt{x_1^2-1^2}+4\sqrt{x^2_2-2^2}+...+200\sqrt{x_{100}^2-100^2}=x_1^2+x^2_2+...+x_{100}^2\)

\(\Leftrightarrow x_1^2-1-2\sqrt{x_1^2-1}+1+x^2_2-4-4\sqrt{x^2_2-4}+4+...+x^2_{100}-10000-200\sqrt{x_{100}^2-10000}+10000=0\)

\(\Leftrightarrow\left(\sqrt{x^2_1-1}-1\right)^2+\left(\sqrt{x^2_2-4}-2\right)^2+....+\left(\sqrt{x^2_{100}-10000}-100\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2_1-1}-1=0\\\sqrt{x^2_2-4}-2=0\\....\\\sqrt{x^2_{100}-10000}-100=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\sqrt{1^2+1}=\sqrt{2}\\x_2=\sqrt{2^2+4}=2\sqrt{2}\\....\\x_{100}=\sqrt{100^2+10000}=100\sqrt{2}\end{matrix}\right.\)

20 tháng 12 2017

yêu cầu đề bài đâu mà chứng minh đc. Lầy :I