Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta có a chia hết cho a, a+7 cũng chia hết a => UCLN của a và a+7 là a
2)a)5700÷50
=570÷5
=114
b)143÷13
=(13×11)÷13
=11
a) \(\frac{25}{9}-\frac{12}{13}x=\frac{7}{9}\)
=> \(\frac{12}{13}x=\frac{25}{9}-\frac{7}{9}=\frac{18}{9}=2\)
=> \(x=2:\frac{12}{13}=2\cdot\frac{13}{12}=\frac{13}{6}\)
b) \(x:\frac{13}{3}=-2,5\)
=> \(x:\frac{13}{3}=-\frac{5}{2}\)
=> \(x=\left(-\frac{5}{2}\right)\cdot\frac{13}{3}=-\frac{65}{6}\)
c) \(\frac{x}{3}-\frac{1}{4}=-\frac{5}{6}\)
=> \(\frac{4x-3}{12}=-\frac{10}{12}\)
=> 4x - 3 = -10
=> 4x = -10 + 3 = -7
=> x = -7/4
Bài 2 :
\(A=a\cdot\frac{1}{3}+a\cdot\frac{1}{4}-a\cdot\frac{1}{6}=a\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)=a\cdot\frac{5}{12}\)
Thay a = -3/5 vào biểu thức ta có : \(A=\left(-\frac{3}{5}\right)\cdot\frac{5}{12}=\frac{-3}{12}=\frac{-1}{4}\)
\(B=b\cdot\frac{5}{6}+b\cdot\frac{3}{4}-b\cdot\frac{1}{2}=b\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)=b\cdot\frac{13}{12}\)
Thay b = 12/13 vào ta được kết quả là 1
a ) \(\frac{25}{9}-\frac{12}{13}\cdot x=\frac{7}{9}\)
\(\Rightarrow\frac{12}{13}\cdot x=\frac{25}{9}-\frac{7}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\div\frac{12}{13}=2\cdot\frac{13}{12}=\frac{13}{6}\)
Vậy ...
b ) \(x\div\frac{13}{3}=-\frac{5}{2}\)
\(\Rightarrow x\div\frac{13}{3}=-\frac{5}{2}\)
\(\Rightarrow x=\left(-\frac{5}{2}\right)\cdot\frac{13}{3}=-\frac{65}{6}\)
Vậy ..
c ) \(\frac{x}{3}-\frac{1}{4}=-\frac{5}{6}\)
\(\Rightarrow\frac{4x-3}{12}=-\frac{10}{12}\)
\(\Rightarrow4x-3=-10\)
\(\Rightarrow4x=-10+3=-7\)
\(\Rightarrow x=-\frac{7}{4}\)
Vậy ....
1)do 72=23.32
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24
2)Đặt ƯCLN(a;b)=d
Vậy a=dm ; b=dn (m>n vì a-b là số nguyên dương)
a-b=dm-dn=d.(m-n)=7=7.1=1.7
Với d=7 thì ƯCLN(a;b)=7, Mà a.b=ƯCLN(a;b).BCNN(a;b) => a.b=7.140=980
Khi đó: a=7m ; b=7n => a.b=7m.7n=49.m.n=980 => m.n =20=5.4=10.2 (do m>n nên không có trường hợp 4.5 và 2.10
+ Khi m=5 ; n=4 thì a=7.5=35 ; b=7.4=28
+Khi m=10 ; n=2 thì a=7.10=70 ; b=7.2=14
Với d=1 thì ƯCLN(a;b)=1 => a.b=1.140=140
Khi đó: a=1m=m ; b=1n=n =>
a.b=m.n=140 => m.n=140.1=35.4=28.5=70.2
<=> a.b=140.1=35.4=28.5=70.2
Đó chính là các giá trị a,b thỏa mãn
cn mấy ý khác bn dựa vào tự làm nha!
b,
b.a=30=1.30=2.15=3.10=5.6
=>(b,a)={(1,30),(2,15),(3,10),(5,6)}
c,
(x+1)(y+2)=10=1.10=2.5
TH1:x+1=1;y+2=10=>x=0,y=8
tuong tu=>(x,y)={(0,8),(1,3),(4,0)}
Đặt ucln (a,a+7)=d(d thuoc n sao)
=> \(\hept{\begin{cases}a⋮d\\a+7⋮d\end{cases}}\Rightarrow a+7-a⋮d\Rightarrow7⋮d\Rightarrow d\inƯ\left(7\right)=\left\{1;7\right\}\left(d\inℕ^∗\right)\)
d=7=>a chia het cho 7=>a=7k
d=1=> a o chia het cho 7 => a khac 7k
ds...
thk