">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Bài 1:

\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\)

\(=\dfrac{\left(x-z\right)-\left(x-y\right)}{\left(x-y\right)\left(x-z\right)}+\dfrac{\left(y-x\right)-\left(y-z\right)}{\left(y-z\right)\left(y-x\right)}+\dfrac{\left(z-y\right)-\left(z-x\right)}{\left(z-x\right)\left(z-y\right)}\)

\(=\dfrac{1}{x-y}-\dfrac{1}{x-z}+\dfrac{1}{y-z}-\dfrac{1}{y-x}+\dfrac{1}{z-x}-\dfrac{1}{z-y}\)

\(=\dfrac{1}{x-y}+\dfrac{1}{z-x}+\dfrac{1}{y-z}+\dfrac{1}{x-y}+\dfrac{1}{z-x}+\dfrac{1}{y-z}\)

\(=\dfrac{2}{x-y}+\dfrac{2}{z-x}+\dfrac{2}{y-z}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\left(đpcm\right)\)

Vậy...

9 tháng 4 2017

bài 1 b

Theo đề bài ta có :

S - P = \(\left(a^3_1+a^3_2+....+a^3_{2013}\right)-\left(a_1+a_2+....+a_{2013}\right)\)

= \(\left(a^3_1-a_1\right)+\left(a^3_2-a_2\right)+....\left(a^3_{2013}-a_{2013}\right)\)

= \(a_1\left(a^2_1-1\right)+a_2\left(a^2_2-1\right)+....a_{2013}\left(a^2_{2013}-1\right)\)

= \(a_1\left(a_1-1\right)\left(a_1+1\right)+a_2\left(a_2-1\right)\left(a_2+1\right)+....+a_{2013}\left(a_{2013}-1\right)\left(a_{2013}+1\right)\)

Dễ chứng minh \(a_1\left(a_1-1\right)\left(a_1+1\right)⋮6\) các số hạng còn lại cũng chứng minh tương tự

Suy ra S - P \(⋮\) 6

Nếu \(P⋮̸6\) thì \(S⋮̸6\) do đó \(S⋮6\) khi và chỉ khi P chia hết cho 6

9 tháng 2 2017

1

9 tháng 2 2017

1 đó

8 tháng 2 2017

1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)

\(\Leftrightarrow x-y=10y-10z\)

\(\Leftrightarrow x=11y-10z\)

Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:

\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)

Chá quá, có ghi nhìn không rõ đề

8 tháng 2 2017

2) \(2x^2=9x-4\)

\(\Leftrightarrow2x^2-9x+4=0\)

\(\Leftrightarrow2x^2-8x-x+4=0\)

\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow2x-1=0\) hoặc x-4=0

1) 2x-1=0<=>x=1/2

2)x-4=0<=>x=4(Loại)

=> x=1/2

2 tháng 11 2017

b)x3-2x2-4xy2+x

=x(x2-2x-4y2+1)

=x[(x2-2x+1)-4y2]

=x[(x-1)2-4y2]

=x(x-1-2y)(x-1+2y)

2 tháng 11 2017

c) (x+2)(x+3)(x+4)(x+5)-8

=[(x+2)(x+5)][(x+3)(x+4)]-8

=(x2+5x+2x+10)(x2+4x+3x+12)-8

=(x2+7x+10)(x2+7x+12)-8

đặt x2+7x+10 =a ta có

a(a+2)-8

=a2+2a-8

=a2+4a-2a-8

=(a2+4a)-(2a+8)

=a(a+4)-2(a+4)

=(a+4)(a-2)

thay a=x2+7x+10 ta đc

(x2+7x+10+4)(x2+7x+10-2)

=(x2+7x+14)(x2+7x+8)

bài 2 x3-x2y+3x-3y

=(x3-x2y)+(3x-3y)

=x2(x-y)+3(x-y)

=(x-y)(x2+3)

17 tháng 9 2017

Bài 2 :

a ) \(25-20x+4x^2=0\)

\(\Leftrightarrow\left(5-2x\right)^2=0\)

\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)

Vậy \(x=\dfrac{5}{2}\)

17 tháng 9 2017

a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)

\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)

Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)

Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài

Vậy..

25 tháng 10 2017

Giup cai j ? Cau nao ?

25 tháng 10 2017

Đề số 3.

1.

a,\(4x\left(5x^2-2x+3\right)\)

\(=20x^3-8x^2+12x\)

b.\(\left(x-2\right)\left(x^2-3x+5\right)\)

\(=x^3-3x^2+5x-2x^2+6x-10\)

\(=x^3-5x^2+11x-10\)

c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)

\(=2x^2-x+\dfrac{3}{5}\)

d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)

\(=\left(x-6y\right)^2:\left(x-6y\right)\)

\(=x-6y\)

2.

a,\(x^2+5x+5xy+25y\)

\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)

\(=x\left(x+5\right)+5y\left(x+5\right)\)

\(=\left(x+5y\right)\left(x+5\right)\)

b,\(x^2-y^2+14x+49\)

\(=\left(x^2+14x+49\right)-y^2\)

\(=\left(x+7\right)^2-y^2\)

\(=\left(x+7-y\right)\left(x+7+y\right)\)

c,\(x^2-24x-25\)

\(=x^2+25x-x-25\)

\(=\left(x^2-x\right)+\left(25x-25\right)\)

\(=x\left(x-1\right)+25\left(x-1\right)\)

\(=\left(x+25\right)\left(x-1\right)\)

3.

a,\(5x\left(x-3\right)-x+3=0\)

\(5x\left(x-3\right)-\left(x-3\right)=0\)

\(\left(5x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)

b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)

\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)

\(3x^2-15x-2x-3x^2+2+3x=30\)

\(-14x+2=30\)

\(-14x=28\)

\(x=-2\)

c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)

\(x^2+5x+6-x^2-5x+2x+10=0\)

\(2x+16=0\)

\(2x=-16\)

\(x=-8\)

Mình học chật hình không giúp bạn được.Xin lỗi!

7 tháng 2 2017

\(\left(x+a\right)\left(x+8\right)=x^2+bx+24\)

\(\Leftrightarrow x^2+ax+8x+8a=x^2+bx+24\)

\(\Leftrightarrow x^2+\left(8+a\right)x+8a=x^2+bx+24\)

=> 8a=24=>a=3

(8+a)=b Thay a=3=>b=11

=> a+b=3+11=14

8 tháng 2 2017

14 nha chắc chắn đó

5 tháng 12 2016

1)60

1)4

Chac chan dung