Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bài này khó :( nghĩ được bài nào làm bài đấy nhé, bạn thông cảm
a, Dùng phương pháp kẹp
Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow x^3+x^2+x+1>x^3\)
\(\Rightarrow y^3>x^3\)
\(\Rightarrow y>x\)(1)
Xét hiệu \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-y^3\)
\(=x^3+6x^2+12x+8-x^3-x^2-x-1\)
\(=5x^2+11x+7\)
\(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\)
\(\Rightarrow\left(x+2\right)^3>y^3\)
\(\Rightarrow x+2>y\)(2)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow x< y< x+2\)
Mà \(x;y\inℤ\Rightarrow y=x+1\)
Thế vào pt ban đầu đc \(x^3+x^2+x+1=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)
*Với x = 0 => y= 1
*Với x = -1 => y = 0
Vậy ...
Câu 2/
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)
Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)
Xét \(x^2,y^2,z^2\ge1\)
Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)
\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)
\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)
Dấu = xảy ra khi \(x^2=y^2=z^2=1\)
\(\Rightarrow\left(x,y,z\right)=?\)
Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có
\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)
\(\Leftrightarrow x^4=3\left(l\right)\)
Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)
Bài 2/
Ta có: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)
Vậy phương trình không có nghiệm nguyên dương.