Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{2x}{2.3}=\frac{5y}{5.2}=\frac{2x}{6}=\frac{5y}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{5y}{10}=\frac{2x+5y}{6+10}\)\(=\frac{32}{16}=2\)
\(\frac{2x}{6}=2\Rightarrow2x=12\Rightarrow x=6\)
\(\frac{5y}{10}=2\Rightarrow5y=20\Rightarrow y=4\)
Vậy ..
ta có: x/3 =y/2 => 2x/6 = 5y/10
áp dụng tính chất dãy tỉ số bằng nhau ta có:
2x/6 = 5y/10 = 2x + 5y/ 6 + 10 = 32/16 = 2
=> x = 3 . 2 = 6 ; y = 2 . 2 = 4
vậy ( x , y ) = ( 6 ; 4 )
Chia cả hai vế cho 5^x:
pt <=> (3/5)^x + (4/5)^x = 1
- Ta nhận thấy x=2 là nghiệm của phương trình
(3/5)^2 + (4/5)^2 = 1
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1)
(4/5)^x < (4/5)^2 (do 4/5<1)
----------------------------------------...
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt)
=> Phương trình không có nghiệm khi x>2.
+ Tương tự với x<2, phương trình không có nghiệm khi x<2.
- Vậy phương trình có nghiệm duy nhất x=2.
3^x+4^x=5^x vax=2
Thay x vao bieu thu ta co :
3^2+4^2=5^2
Xong roi do
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Rightarrow\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\left(x+3\right)\cdot\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
mà \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\ne0\)
=> x + 3 = 0
x = -3
2.I3x - 1I + 1 = 5
<=>2.I3x - 1I = 5-1
<=>2.I3x - 1I =4
<=>I3x - 1I=2
=>Có 2 trường hợp
3x-1=2 =>3x=3 =>x=1
3x-1=-2 =>3x=1 =>x=1/3
Vậy x có 2 giá trị thỏa mãn là 1 và 1/3
Học tốt ^-^
a:ta có: \(2x^2\ge0\)
\(\Leftrightarrow2x^2+1>0\forall x\)
vậy: H(x) vô nghiệm
- Vì (3x-5)^2008 và (5y+3)^2010 là lũy thừa bậc chẵn nên ta có :
- 3x-5=0 và 5y+3=0
từ đó =>x=5/3 và y=-3/5
- vì (3x-5)^2008 và (5y+3)^2010 là lũy thừa bậc chẵn nên :
- 3x-5 và 5y+3 đều bằng o
=> 3x-5=0 =>x=5/3 tương tự ta cũng tim được y=-3/5
Bai lam
\(3^{x+1}=9^x\Leftrightarrow3^{x+1}=3^{2x}\)
\(\Leftrightarrow x-1=2x\Leftrightarrow-x-1=0\Leftrightarrow x=-1\)