K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 4 2018

Bài 1:

a) Bạn xem lại đề bài hộ mình.

b) Thực hiện biến đổi tương đương:

\((x+y+z)^2\leq 3(x^2+y^2+z^2)\)

\(\Leftrightarrow x^2+y^2+z^2+2(xy+yz+xz)\leq 3(x^2+y^2+z^2)\)

\(\Leftrightarrow 2(xy+yz+xz)\leq 2(x^2+y^2+z^2)\)

\(\Leftrightarrow 2(x^2+y^2+z^2)-2(xy+yz+xz)\geq 0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\)

BĐT trên luôn đúng do \(\left\{\begin{matrix} (x-y)^2\geq 0\\ (y-z)^2\geq 0\\ (z-x)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
5 tháng 4 2018

Bài 2:
\(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)

\(\Rightarrow 2A=\sqrt{16x+8\sqrt{x}+4}+\sqrt{16y+8\sqrt{y}+4}+\sqrt{16z+8\sqrt{z}+4}\)

\(=\sqrt{18x-2(\sqrt{x}-2)^2+12}+\sqrt{18y-2(\sqrt{y}-2)^2+12}+\sqrt{18z-2(\sqrt{z}-1)^2+12}\)

\(\Rightarrow 2A\leq \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}(1)\)

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12})^2\leq [(18x+12)+(18y+12)+(18z+1)](1+1+1)\)

\(=3[18(x+y+z)+36]=756\)

\(\Rightarrow \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}\leq \sqrt{756}=6\sqrt{21}(2)\)

Từ \((1); (2)\Rightarrow 2A\leq 6\sqrt{21}\Rightarrow A\leq 3\sqrt{21}\)

Vậy \(A_{\max}=3\sqrt{21}\). Dấu bằng xảy ra khi \(x=y=z=4\)

NM
28 tháng 7 2021

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)

Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

dấu bằng xảy ra khi x=y=z=1

29 tháng 7 2021

ủa bạn oi nó là \(\sqrt{2}x\)mà có phai\(\sqrt{2x}dau\)

13 tháng 6 2021

Mình cũng học lớp 9 nhưng mk ko biết làm bài này.

13 tháng 6 2021

Đk: \(-1\le x,y,z\le1\)

Ta có: \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}=\frac{x^2-y^2}{2}+\frac{1}{2}\) (bđt cosi)

CMTT: \(y\sqrt{1-z^2}\le\frac{y^2-z^2}{2}+\frac{1}{2}\)

\(z\sqrt{1-x^2}\le\frac{z^2-x^2}{2}+\frac{1}{2}\)

=> VT = \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2-y^2}{2}+\frac{y^2-z^2}{2}+\frac{z^2-x^2}{2}+\frac{3}{2}=\frac{3}{2}\)

VP = 3/2

=> VT = VP <=> \(\hept{\begin{cases}x^2=1-y^2\\y^2=1-z^2\\z^2=1-x^2\end{cases}}\) <=> \(x^2+y^2+z^2=1-y^2+1-z^2+1-x ^2\)

<=> \(2x^2+2y^2+2z^2=3\) <=> \(x^2+y^2+z^2=\frac{3}{2}\)

2 tháng 1 2017

Áp dụng bất đẳng thức Cosi với 2 số thực không âm ta có: 

 \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)

 \(y\sqrt{1-z^2}\le\frac{y^2+1-z^2}{2}\)

 \(z\sqrt{1-x^2}\le\frac{z^2+1-x^2}{2}\)

=>\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-z^2}{2}+\frac{z^2+1-x^2}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x^2=1-y^2;y^2=1-z^2;z^2=1-x^2\)

Cộng vế với vế của các đẳng thức với nhau ta được: \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2=3-\left(x^2+y^2+z^2\right)\)

<=>\(2\left(x^2+y^2+z^2\right)=3\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)(đpcm)

16 tháng 10 2017

trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)

3 tháng 1 2021

\(P\ge\frac{x+y+z}{2}\ge\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\frac{1}{2}\)

"=" khi \(x=y=z=\frac{1}{3}\)

19 tháng 4 2018

Áp dụng bất đẳng thức Bunyakovsky:

\(NL^2=\left(\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(4x+2\sqrt{x}+1+4y+2\sqrt{y}+1+4z+2\sqrt{z}+1\right)\)

\(=3\left(4x+4y+4z\right)+3\left(2\sqrt{x}+2\sqrt{y}+2\sqrt{z}\right)+3\left(1+1+1\right)\)

\(=12\left(x+y+z\right)+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+9\)

\(=153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

Mặt khác,theo Bunyakovsky: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)=36\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le6\)

\(\Rightarrow153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le153+36=189\)

\(\Rightarrow NL\le\sqrt{189}\)

Dấu "=" xảy ra khi: \(x=y=z=4\)

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

8 tháng 4 2017

Bài 1: Áp dụng BĐT AM-GM ta có:

\(1+x\ge2\sqrt{x}\)

\(x+y\ge2\sqrt{xy}\)

\(y+1\ge2\sqrt{y}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)

\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\) 

Đẳng thức xảy ra khi  \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)

Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)

Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên 

\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)

\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)

\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)

\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn