Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,19^2=\left(18+1\right)^2=18^2+2.18.1+1^2=324+36+1=361\)
\(28^2=\left(27+1\right)^2=27^2+2.27.1+1^2=729+54+1=784\)
\(81^2=\left(80+1\right)^2=80^2+2.80.1+1^2=6400+160+1=6561\)
\(91^2=\left(90+1\right)^2=90^2+2.90.1+1^2=8100+180+1=8281\)
\(b,19.21=\left(20-1\right)\left(20+1\right)=20^2-1^2=400-1=399\)
\(29.31=\left(30-1\right)\left(30+1\right)=30^2-1^2=900-1=899\)
\(39.41=\left(40-1\right)\left(40+1\right)=40^2-1^2=1600-1=1599\)
\(c,28^2-8^2=\left(28-8\right)\left(28+8\right)=20.36=720\)
\(56^2-46^2=\left(56-46\right)\left(56+46\right)=10.102=1020\)
\(67^2-57^2=\left(67-57\right)\left(67+57\right)=10.124=1240\)
\(M=\left(\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right)\left(\sqrt{6}+1\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+1\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+1\right)\)
\(=6+\sqrt{6}-11\sqrt{6}-11=-5-10\sqrt{6}\)
\(M=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+1\right)\)
\(M=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}+2\right)\left(\sqrt{6}-2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+1\right)\)
\(M=\left[\dfrac{15\left(\sqrt{6}-1\right)}{6-1}+\dfrac{4\left(\sqrt{6}+2\right)}{6-4}-\dfrac{12\left(3+\sqrt{6}\right)}{9-6}\right]\left(\sqrt{6}+1\right)\)
\(M=\left[3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+1\right)\)
\(M=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\cdot\left(\sqrt{6}+1\right)\)
\(M=\left(5\sqrt{6}-4\sqrt{6}+1-12\right)\left(\sqrt{6}+1\right)\)
\(M=\left(\sqrt{6}-11\right)\left(\sqrt{6}+1\right)\)
\(M=6+\sqrt{6}-11\sqrt{6}-11\)
\(M=-10\sqrt{6}-5\)
e: \(=\left|3-\sqrt{2}\right|=3-\sqrt{2}\)
h: \(=3-\sqrt{2}+3+\sqrt{2}=6\)
g: \(=\left|0.1-\sqrt{0.1}\right|=0.1-\sqrt{0.1}\)
i: \(=\left|2\sqrt{2}-3\right|=3-2\sqrt{2}\)
c: \(=\left|2+5\right|=7\)
o: \(=5-2\sqrt{6}-5-2\sqrt{6}=-4\sqrt{6}\)
n: \(=4-2\sqrt{3}+4+2\sqrt{3}=8\)
m: \(=7+2\sqrt{10}-7-2\sqrt{10}=0\)
\(\frac{3\sqrt{10}+\sqrt{20}-3\sqrt{6}-\sqrt{12}}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{3\sqrt{10}+2\sqrt{5}-3\sqrt{6}-2\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{\left(3\sqrt{10}-3\sqrt{6}\right)+\left(2\sqrt{5}-2\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{3\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)+2\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}\)
\(=3\sqrt{2}+2\)
\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}}=\sqrt{\frac{7-3\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}}\)
\(=\sqrt{5-\sqrt{5}}\)
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)\(=\frac{4+2\sqrt{3}}{\sqrt{4}+\sqrt{4+2\sqrt{3}}}+\frac{4-2\sqrt{3}}{\sqrt{4}-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{4+2\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{4-2\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)\(=\frac{4+2\sqrt{3}}{2+\sqrt{3}+1}+\frac{4-2\sqrt{3}}{2-\sqrt{3}+1}\)
\(=\frac{\left(\sqrt{3}+1\right)^2}{3+\sqrt{3}}+\frac{\left(\sqrt{3}-1\right)^2}{3-\sqrt{3}}\)
\(=\frac{\left(\sqrt{3}+1\right)^2}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{\left(\sqrt{3}-1\right)^2}{\sqrt{3}\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+1}{\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}}=2\)