K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2016

\(x^3-4x=0\)

\(x\left(x^2-4\right)=0\)

\(x\left(x-2\right)\left(x+2\right)=0\)

\(TH1:x=0\)

\(Th2:x-2=0\Rightarrow x=2\)

\(Th3:x+2=0\Rightarrow x=-2\)

Vậy GTLN của x là 2

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

20 tháng 11 2018

Ta có : \(\frac{x^3-16x}{x^3-3x^2-4x}=0\)

\(\Rightarrow\frac{x\left(x^2-16\right)}{x\left(x^2-3x-4\right)}=0\) 

\(\Rightarrow\frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+1\right)}=0\)

\(\Rightarrow x\left(x-4\right)\left(x+4\right)=0\) 

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\) 

Nếu x = 4

thì x - 4 = 0

\(\Rightarrow x\left(x-4\right)\left(x+1\right)=0\) 

\(\Rightarrow\) Phân thức \(\frac{x\left(x+4\right)\left(x-4\right)}{x\left(x-4\right)\left(x+1\right)}\) không tồn tại

\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

8 tháng 4 2019

Ta có:\(x^2+4x+10=\left(x^2+2\cdot2\cdot x+2^2\right)+6=\left(x+2\right)^2+6\)

\(\Rightarrow\frac{3}{x^2+4x+10}=\frac{3}{\left(x+2\right)^2+6}\)

Do \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+6\ge6\)

\(\Rightarrow\frac{3}{\left(x+2\right)^2+6}\le\frac{3}{6}=\frac{1}{2}\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow x=-2\)

DD
15 tháng 6 2021

\(A=2+x-x^2=\frac{-1}{4}+x-x^2+\frac{9}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Dấu \(=\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\).

Vậy \(maxA=\frac{9}{4}\).

15 tháng 6 2021

\(A=-x^2+x+2=-\left(x^2-x-2\right)\)

\(=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{9}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{3}{2}\le\frac{3}{2}\)

Dấu ''='' xảy ra khi \(x=\frac{1}{2}\)

Vậy GTNN A là 3/2 khi x = 1/2