\(\dfrac{1}{a}+\dfrac{1}{b}\) ≥ 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

a, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

 

ab≤a2+b2/2

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

a)

Sử dụng pp biến đổi tương đương:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)

\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)

Ta có đpcm.

b) Áp dụng công thức của phần a ta có:

\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)

Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)

Do đó:

\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)

Cộng theo vế các BĐT trên thu được:

\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)

\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

19 tháng 7 2018

câu a nè:

http://123link.pw/0Qyw5v

19 tháng 7 2018

câu d nè : http://123link.pw/Jx46C

nhớ cho đúng nha ^-^

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

5 tháng 7 2018

\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)

\(\Leftrightarrow3< 1\) ( Vô lý )

\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)

\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)

Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)

\(\RightarrowĐpcm.\)

\(2a.\) Áp dụng BĐT Cauchy , ta có :

\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)

\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

5 tháng 7 2018

\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)

\(\Leftrightarrow x-4=a^2\)

\(\Leftrightarrow x=a^2+4\left(TM\right)\)

\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)

\(\Leftrightarrow x+4=x^2+4x+4\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

KL....

1 tháng 8 2018

Áp dụng BĐT cauchy ngược dấu ta có:

\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)

Chứng minh tương tự ta có:

\(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2};\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)

Từ đó ta có: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge1-\dfrac{a}{2}+1-\dfrac{b}{2}+1-\dfrac{c}{2}=\)\(=3-\dfrac{a+b+c}{2}=3-\dfrac{3}{2}=\dfrac{3}{2}\left(đpcm\right)\)

1 tháng 8 2018

Áp dụng BĐT Cauchy dạng Engel , ta có :

\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\)\(\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+3}=\dfrac{9}{a^2+b^2+c^2+3}\left(1\right)\)

Ta có BĐT : \(a^2+b^2+c^2\text{≥}ab+bc+ac\)

\(3\left(a^2+b^2+c^2\right)\text{≥}\left(a+b+c\right)^2\)

\(a^2+b^2+c^2\text{≥}\dfrac{9}{3}=3\left(2\right)\)

Từ ( 1 ; 2 ) ⇒ đpcm .

"=" ⇔ \(a=b=c=\dfrac{1}{3}\)

10 tháng 7 2017

1) Đặt \(\dfrac{b\sqrt{a-1}+a\sqrt{b-1}}{ab}\) là A

\(\)\(A=\dfrac{\sqrt{a-1}}{a}+\dfrac{\sqrt{b-1}}{b}\)

\(\left(\dfrac{\sqrt{a-1}}{a}\right)^2=\dfrac{a-1}{a^2}=\dfrac{1}{a}-\dfrac{1}{a^2}=\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)\)

\(\Rightarrow\)\(\dfrac{\sqrt{a-1}}{a}=\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\)

Tương tự: \(\dfrac{\sqrt{b-1}}{b}=\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\)

Áp dụng BĐT Cauchy, ta có:

\(\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\le\dfrac{\dfrac{1}{a}+\left(1-\dfrac{1}{a}\right)}{2}=\dfrac{1}{2}\)

Tương tự: \(\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\le\dfrac{1}{2}\)

Cộng vế theo vế của 2 BĐT vừa chứng minh, ta được:

\(A\le1\left(đpcm\right)\)

11 tháng 7 2017

Xét: \(a^2+\dfrac{2}{a^3}=\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{a^3}+\dfrac{1}{a^3}\left(1\right)\)

Áp dụng BĐT Cauchy cho 5 số dương trên, ta có: \(\left(1\right)\ge5\sqrt[5]{\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{a^3}.\dfrac{1}{a^3}}=5\sqrt[5]{\dfrac{1}{27}}=\dfrac{5\sqrt[5]{9}}{3}\left(đpcm\right)\)

Dấu ''='' xảy ra khi và chỉ khi \(\dfrac{1}{3}a^2=\dfrac{1}{a^3}\Leftrightarrow a=\sqrt[5]{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Ta có:

\(\frac{a^8+b^8+c^8}{a^3b^3c^3}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)(*)\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} a^8+b^8\geq 2a^4b^4\\ b^8+c^8\geq 2b^4c^4\\ c^8+a^8\geq 2c^4a^4\end{matrix}\right.\Rightarrow a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\)

Tiếp tục áp dụng AM-GM:

\(a^8+b^8+a^4b^4+c^8\geq 4\sqrt[4]{a^{12}b^{12}c^8}=4a^3b^3c^2\)

\(b^8+c^8+b^4c^4+a^8\geq 4b^3c^3a^2\)

\(c^8+a^8+c^4a^4+b^8\geq 4c^3a^3b^2\)

Cộng lại: \(3(a^8+b^8+c^8)+(a^4b^4+b^4c^4+c^4a^4)\geq 4a^2b^2c^2(ab+bc+ca)\)

\(a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\Rightarrow 4(a^8+b^8+c^8)\geq 4a^2b^2c^2(ab+bc+ac)\)

hay \(a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)\Rightarrow (*)\) đúng

Ta có đpcm.

11 tháng 2 2020

Rõ ràng ở bài này không thể dùng Svacxo trực tiếp.

\(\frac{1}{ab}+\frac{3}{a^2+b^2+ab}=\left(\frac{x}{ab}+\frac{3}{a^2+ab+b^2}\right)+\frac{1-x}{ab}\), với \(0\le x\le1\)

Ta có \(\frac{1-x}{ab}\ge\frac{4\left(1-x\right)}{\left(a+b\right)^2}=4\left(1-x\right)\)

\(\frac{x}{ab}+\frac{3}{a^2+ab+b^2}\ge\frac{\left(\sqrt{x}+\sqrt{3}\right)^2}{ab+\left(a^2+ab+b^2\right)}=\left(\sqrt{x}+\sqrt{3}\right)^2\)

\(\Rightarrow\frac{1}{ab}+\frac{3}{a^2+ab+b^2}\ge4\left(1-x\right)+\left(\sqrt{x}+\sqrt{3}\right)^2\)\(\forall0\le x\le1\)

Dấu "=" khi \(\left\{{}\begin{matrix}a=b=\frac{1}{2}\\\frac{\sqrt{x}}{ab}=\frac{\sqrt{3}}{a^2+ab+b^2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=b=\frac{1}{2}\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy số thực x thích hợp để điều chỉnh là \(x=\frac{1}{3}\)

\(\frac{1}{ab}+\frac{3}{a^2+ab+b^2}\ge4\left(1-\frac{1}{3}\right)+\left(\sqrt{\frac{1}{3}}+\sqrt{3}\right)^2=\frac{8}{3}+\frac{16}{3}=8\)

5 tháng 5 2019

bạn làm được bài nảy chưa ? chỉ mình với

20 tháng 5 2018

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bđt Cauchy ta có :

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :

\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=3\)