K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

Ta có: \(y=\frac{x}{\left(x+2004\right)^2}\)

\(\Rightarrow\frac{1}{y}=\frac{\left(x+2004\right)^2}{x}=\frac{x^2+4008x+2004^2}{x}=x+4008+\frac{2004^2}{x}\)

Để y lớn nhất thì \(\frac{1}{y}\)phải bé nhất

\(\frac{1}{y}=x+4008+\frac{2004^2}{x}\ge4008+2.2004=8016\)

Vậy GTNN của \(\frac{1}{y}\)là 8016 tại x = 2004

Vậy GTLN của \(y=\frac{1}{8016}\)tại x = 2004

13 tháng 9 2019

Ta đặt t = \(\frac{1}{2004y}\)

Bài toán được đưa về tìm x để t bé nhất :
 Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\) ( 1 )

Ta thấy : Theo bất đẳng thức Côsi cho 2 số dương ta có :

\(x^2+2004^2\ge2.2004.x\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\) ( 2 )

Dấu " = " xảy ra khi x = 2004 

Từ ( 1 ) và ( 2 ) \(\Rightarrow t\ge4\Rightarrow\) giá trị bé nhất của t = 4 khi x = 2004 

Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\) . Khi \(x=2004\)

Chúc bạn học tốt !!!

24 tháng 6 2016

để \(y=\frac{x}{\left(x+2004\right)^2}\) lớn nhất thì \(\frac{\left(x+2004\right)^2}{x}\) phải bé nhất

ta có \(\frac{\left(x+2004\right)^2}{x}=\frac{x^2+2.2004.x+2004^2}{x}\)

                                      \(=\frac{x^2}{x}+\frac{4008x}{x}+\frac{2004^2}{x}\)

                                      \(=4008+x+\frac{2004^2}{x}\)

để \(\frac{\left(x+2004\right)^2}{x}\)bé nhất thì \(4008+x+\frac{2004^2}{x}\)bé nhất 

\(=>x+\frac{2004^2}{x}\)phải bé nhất 

ta thấy \(x.\frac{2004^2}{x}=2004^2\)(tích này không đổi, luôn bằng 2004với mọi giá trị của x)

áp dụng tính chất: nếu 2 số dương có tích không đổi thì tổng của chúng nhỏ nhất khi và chỉ khi 2 số bằng nhau 

ta có : vì tích của x và\(\frac{2004^2}{x}\)không đổi  nên \(x+\frac{2004^2 }{x}\)nhỏ nhất khi và chỉ khi \(x=\frac{2004^2}{x}\)

                                                                                                                                        \(=>2004^2=x^2\)

                                                                                                                                          \(=>x=2004\)

thay x=2004 vào y ta được

\(y=\frac{2004}{\left(2004+2004\right)^2}=\frac{1}{8016}\)

vậy GTLN của \(y=\frac{1}{8016}\) khi và chỉ khi x=2014

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)