K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

b)Đk:\(x\ge-\frac{1}{16}\)

\(\Leftrightarrow-2\sqrt{1+16x}=2-x^2+x\)

Bình 2 vế 

\(\left(-2\right)^2\sqrt{\left(1+16x\right)^2}=\left(2-x^2+x\right)^2\)

\(\Leftrightarrow64x+4=x^4-2x^3-3x^2+4x+4\)

\(\Leftrightarrow x^4-2x^3-3x^2-60x=0\)

\(\Leftrightarrow x\left[x^3-2x^2-3x-60\right]=0\)

\(\Leftrightarrow x\left[x^3+3x^2+12x-5x^2-15x-60\right]=0\)

\(\Leftrightarrow x\left[x\left(x^2+3x+12\right)-5\left(x^2+3x+12\right)\right]=0\)

\(\Leftrightarrow x\left[\left(x-5\right)\left(x^2+3x+12\right)\right]=0\)

\(\Leftrightarrow\begin{cases}x=0\left(loai\right)\\x-5=0\\x^2+3x+12=0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\left(tm\right)\\x^2+3x+12=0\left(2\right)\end{array}\right.\)

\(\left(2\right)\Leftrightarrow\left(x+\frac{3}{2}\right)^2+\frac{39}{4}>0\)

->vô nghiệm

Vậy pt trên có nghiệm duy nhất là x=5

 

 

 

 

 

 

25 tháng 8 2016

nghiệm phần a khá đp :D

8 tháng 10 2020

a) ĐK: \(x>2009;y>2010;z>2011\)

\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)

Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)

8 tháng 10 2020

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)

\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)

(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)

Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)

Vậy phương trình có một nghiệm duy nhất là 3

11 tháng 9 2017

a) nhé ta đặt \(\sqrt{x^2+2010}=a;x^2=b\)

từ phương rình => \(b^2+a=2010\)

và \(a^2-b=2010\)

nên ta có hệ phương trình sau 

\(\hept{\begin{cases}b^2+a=2010\\a^2-b=2010\end{cases}}\)

trừ hai vếcủa heẹ phương trình ta có 

\(a^2-b^2-b-a=0\Leftrightarrow\left(a+b\right)\left(a-b\right)-\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b-1\right)=0\)

đến đay thì dễ rồi nhé 

11 tháng 9 2017

nhưng vì sao có a2-b=2010

5 tháng 4 2019

đặt t bằng cái căn nớ suy ra  x2=(t-2010)2  

pt(=) (t-2010)2 +t =2010 ngang đây tự giải

5 tháng 4 2019

nhầm

x2=(t2-2010)2

18 tháng 8 2020

Đặt \(a=\sqrt{2x^2+16x+18};b=\sqrt{x^2-1}\left(a,b\ge0\right);\)

Ta có: \(a+b=\sqrt{a^2+2b^2}\Rightarrow a^2+2ab+b^2=a^2+2b^2\)

\(\Leftrightarrow b\left(2a-b\right)=0\)

TH1: \(\sqrt{x^2-1}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}\left(TM\right)}\)

TH2: \(2\sqrt{2x^2+16x+18}=\sqrt{x^2-1}\Leftrightarrow7x^2+64x+72=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-32+3\sqrt{57}}{7}\left(TM\right)\\x=\frac{-32-3\sqrt{57}}{7}\left(KTM\right)\end{cases}}\)

6 tháng 9 2016

Đề bạn sai câu b/

6 tháng 9 2016

thế c lm hộ t câu a vs

 

26 tháng 8 2016

k biet nen k tra loi

27 tháng 8 2016

tham khảo Câu hỏi của Đỗ Thu Hà - Toán lớp 9 - Học toán với OnlineMath

11 tháng 12 2019

\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)

\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)

11 tháng 12 2019

\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)

Làm nốt