K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

1/\(A=\dfrac{x^2-2x+2014}{x^2}\)

\(\Leftrightarrow A=\dfrac{2014x^2-2.x.2014+2014^2}{2014x^2}\)

\(\Leftrightarrow A=\dfrac{2013x^2+x^2-2.x.2014+2014^2}{2014x^2}\)

\(\Leftrightarrow A=\dfrac{2013x^2+\left(x-2014\right)^2}{2014x^2}\)

\(\Leftrightarrow A=\dfrac{2013}{2014}+\dfrac{\left(x-2014\right)^2}{2014x^2}\)

Có: \(\left(x-2014\right)^2\ge0\forall x\)

\(2014x^2>0\forall xvìx\ne0\)

\(\Rightarrow\dfrac{\left(x-2014\right)^2}{2014x^2}\ge0\)

\(\Rightarrow\dfrac{2013}{2014}+\dfrac{\left(x-2014\right)^2}{2014x^2}\ge\dfrac{2013}{2014}\)

\(\Rightarrow A\ge\dfrac{2013}{2014}\)

dấu "=" xảy ra khi và chỉ khi x - 2014 =0 <=> x = 2014

Vậy \(min_A=\dfrac{2013}{2014}\Leftrightarrow x=2014\)

2) Ta có:

\(x=\sqrt{a+\sqrt{a^2-1}}+\sqrt{a-\sqrt{a^2-1}}\)

\(\Leftrightarrow x^2=a-\sqrt{a^2-1}+2\sqrt{a-\sqrt{a^2-1}}.\sqrt{a+\sqrt{a^2-1}}+a+\sqrt{a^2-1}\)

\(\Leftrightarrow x^2=2a+2.\sqrt{\left(a-\sqrt{a^2-1}\right)\left(a+\sqrt{a^2-1}\right)}\)

\(\Leftrightarrow x^2=2a+2\sqrt{a^2-\left(a^2-1\right)}\)

\(\Leftrightarrow x^2=2a+2=2\left(a+1\right)\)

\(\Leftrightarrow-x^3=-2\left(a+1\right)x\)

Đặt \(A=x^3-2x^2-2\left(a+1\right)x+4x+2021\)

\(\Leftrightarrow A=x^3-2\left(2a+2\right)-x^3+4a+2021\)

\(\Leftrightarrow A=-4a-4+4a+2021\)

\(\Leftrightarrow A=2017\)

27 tháng 8 2020

a) Ta có: 

\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-4}{\sqrt{x}-2\sqrt{x}}\)

\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x}}\)

\(A=\frac{\left(\sqrt{x}-3\right)\sqrt{x}+\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\sqrt{x}}\)

\(A=\frac{x-3\sqrt{x}+x-6\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)

\(A=\frac{2x-9\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)

27 tháng 8 2020

ở dưới kia tại sao nó mất 2 căn x vậy ạ

1 tháng 6 2019

Ta có: \(x^2=\left(\sqrt{a+\sqrt{a^2-1}}+\sqrt{a-\sqrt{a^2-1}}\right)^2\)

\(=a+\sqrt{a^2-1}+2\sqrt{a+\sqrt{a^2-1}}\cdot\sqrt{a-\sqrt{a^2-1}}+a-\sqrt{a^2-1}\)

\(=2a+2\sqrt{a^2-a^2+1}=2a+2=2\left(a+1\right)\)

Suy ra: \(x^3=x^2\cdot x=2\left(a+1\right)x\)

\(4a=2\cdot2a=2\left(2a+2\right)-4=2x^2-4\)

Nên \(P=x^3-2x^2-2\left(a+1\right)x+4a+2021\)

\(=x^3-2x^2-x^3+2x^2-4+2021=2021-4=2017\)