K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

\(A=\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)

\(A=\left[\left(x+1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x+2\right)\right]+4x^2\)

\(A=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)

Đặt \(p=x^2-4,5x-8\)ta có :

\(A=\left(p-2,5x\right)\left(p+2,5x\right)+4x^2\)

\(A=p^2-\left(2,5x\right)^2+4x^2\)

\(A=p^2-6,25x^2+4x^2\)

\(A=p^2-2,25x^2\)

\(A=p^2-\left(1,5x\right)^2\)

\(A=\left(p-1,5x\right)\left(p+1,5x\right)\)

Thay \(p=x^2-4,5x-8\)vào A ta có :

\(A=\left(x^2-4,5x-8-1,5x\right)\left(x^2-4,5x-8+1,5x\right)\)

\(A=\left(x^2-6x-8\right)\left(x^2-3x-8\right)\)

4 tháng 1 2019

\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)

\(=\left(x+1\right)\left(x-8\right)\left(x-4\right)\left(x+2\right)+4x^2\)

\(=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)

  Đặt \(x^2-2x-8=t\)

  Ta có : \(\left(t-5x\right)t+4x^2\)

\(=t^2-5xt+4x^2\)

\(=t^2-2.\frac{5}{2}xt+\frac{25}{4}x^2-\frac{9}{4}x^2\)

\(=\left(t-\frac{5}{2}\right)^2-\frac{9}{4}x^2\)

\(=\left(t-\frac{5}{2}-\frac{3}{2}x\right)\left(t-\frac{5}{2}+\frac{3}{2}x\right)\)

    Học tốt ~~

4 tháng 12 2019

\(x^4+x^2y^2+y^4\)

\(=x^4+2x^2y^2+y^4-x^2y^2\)

\(=\left(x^2+y^2\right)^2-\left(xy\right)^2\)

\(=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)

14 tháng 7 2016

bài này 1h rùi,chắc chờ tui ngủ dậy làm;

= (x+y)3 - (x+y) + xy(x+y) =

= (x+y)((x+y)2 -1 +xy)) = (x+y)(x2 +3xy +y2 -1)

21 tháng 2 2017

\(\left(2x^2\right)^2+2.2x^2.9+81-\left(6x\right)^2=\left(2x^2+9\right)-\left(6x\right)^2=\left(2x^2+6x+9\right)\left(2x^2-6x+9\right)\)

2 tháng 9 2018

Hướng dẫn thôi :

a) x ( x + 2 ) ( x^2 - 6x + 4 )

b) ( x + 1 ) ( x + 2 ) ( x - 2 )

2 tháng 9 2018

cách làm cơ

16 tháng 7 2016

a)  x^6 - x^4 + 2x^3 + 2x^2 

=x2(x4-x2+2x+2)

=x2[x4-2x3+2x2+2x3-4x2+4x+x2-2x+2]

=x2[x2(x2-2x+2)+2x(x2-2x+2)+(x2-2x+2)

=x2[(x2+2x+12)(x2-2x+2)]

=x2(x+1)2(x2-2x+2)

b) x^(m+4) + x^(m+1) - x - 1

Ta thấy x=-1 là nghiệm của đa thức

=>đa thức có 1 hạng tử là x+1

=>đa thức đc phân tích là

=(x+1)(xm+3-xm+2+xm+1-1)

24 tháng 8 2019

\(4\left(x+3y-4\right)^2-x^2+6x-9\)

\(=\left[2\left(x+3y-4\right)\right]^2-\left(x^2-6x+9\right)\)

\(=\left[2x+6y-8\right]^2-\left(x-3\right)^2\)

\(=\left(2x+6y-8+x-3\right)\left(2x+6y-8-x+3\right)\)

\(=\left(3x+6y-11\right)\left(x+6y-5\right)\)