Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\dfrac{15x}{7y^3}\cdot\dfrac{2y^2}{x^2}\)
\(=\dfrac{15x\cdot2y^2}{7y^3\cdot x^2}=\dfrac{30xy^2}{7x^2y^3}=\dfrac{30}{7xy}\)
2: \(\dfrac{6x^3}{7y^4}\cdot\dfrac{35y^2}{24x}\)
\(=\dfrac{6x^3}{24x}\cdot\dfrac{35y^2}{7y^4}\)
\(=\dfrac{x^2}{4}\cdot\dfrac{5}{y^2}=\dfrac{5x^2}{4y^2}\)
3: \(\dfrac{4y^2}{x^4}\cdot\dfrac{-3x^2}{8y}\)
\(=\dfrac{4y^2}{8y}\cdot\dfrac{-3x^2}{x^4}=\dfrac{y}{2}\cdot\dfrac{-3}{x^2}=\dfrac{-3y}{2x^2}\)
4: \(\dfrac{-18y^3}{25x^4}:\dfrac{9y^3}{-15x^2}\)
\(=\dfrac{18y^3}{25x^4}\cdot\dfrac{15x^2}{9y^3}\)
\(=\dfrac{18y^3}{9y^3}\cdot\dfrac{15x^2}{25x^4}=2\cdot\dfrac{3}{5x^2}=\dfrac{6}{5x^2}\)
5: \(\dfrac{8y^2}{9x^2}:\dfrac{4y}{3x^2}\)
\(=\dfrac{8y^2}{9x^2}\cdot\dfrac{3x^2}{4y}=\dfrac{8y^2}{4y}\cdot\dfrac{3x^2}{9x^2}=\dfrac{1}{3}\cdot2y=\dfrac{2y}{3}\)
6: \(\dfrac{-20x}{3y^2}:\dfrac{-4x^3}{5y}\)
\(=\dfrac{20x}{3y^2}:\dfrac{4x^3}{5y}\)
\(=\dfrac{20x}{3y^2}\cdot\dfrac{5y}{4x^3}=\dfrac{20x}{4x^3}\cdot\dfrac{5y}{3y^2}=\dfrac{5}{3y}\cdot\dfrac{5}{x^2}=\dfrac{25}{3x^2y}\)
7: \(\dfrac{\left(x+4\right)^2}{4x+12}:\dfrac{x+4}{3x+9}\)
\(=\dfrac{\left(x+4\right)^2}{4\left(x+3\right)}:\dfrac{x+4}{3\left(x+3\right)}\)
\(=\dfrac{\left(x+4\right)^2}{4\left(x+3\right)}\cdot\dfrac{3\left(x+3\right)}{x+4}=\dfrac{3\left(x+4\right)}{4}\)
8: \(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}\)
\(=\dfrac{5\cdot\left(-2\right)}{4}=-\dfrac{10}{4}=-\dfrac{5}{2}\)
9: \(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)
\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)
\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)
10: \(\dfrac{x^2-4}{x^2-x}:\dfrac{x^2+2x}{x-1}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-1\right)}\cdot\dfrac{x-1}{x\left(x+2\right)}\)
\(=\dfrac{\left(x-2\right)}{x^2\left(x+2\right)}\)
e) Ta có: \(x^3-4x-14x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-14x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2-14\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=12\end{matrix}\right.\)
e)x3-4x+14x(x-2)=0
⇔ x(x2-4)+14x(x-2)=0
⇔ x(x-2)(x+2)+14x(x-2)=0
⇔ (x-2)(x2+2x+14x)=0
⇔ x(x-2)(x+16)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\\x+16=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\x=-16\end{matrix}\right.\)
g)x2(x+1)-x(x+1)+x(x-1)=0
⇔ (x+1)(x2-x)+x(x-1)=0
⇔ x(x+1)(x-1)+x(x-1)=0
⇔ x(x-1)(x+2)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)
\(\left(\dfrac{1}{8}\right)^9\cdot8^9-\left(\dfrac{3}{4}-2x\right)^2=\dfrac{41}{9}-\dfrac{72^2}{36^2}\\ \Rightarrow\left(\dfrac{1}{8}\cdot8\right)^9-\left(\dfrac{3}{4}-2x\right)^2=\dfrac{41}{9}-\left(\dfrac{72}{36}\right)^2\\ \Rightarrow1^9-\left(\dfrac{3}{4}-2x\right)^2=\dfrac{41}{9}-2^2=\dfrac{5}{9}\\ \Rightarrow\left(\dfrac{3}{4}-2x\right)^2=1-\dfrac{5}{9}=\dfrac{4}{9}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}-2x=\dfrac{2}{3}\\2x-\dfrac{3}{4}=\dfrac{2}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{12}\\2x=\dfrac{17}{12}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{24}\\x=\dfrac{17}{24}\end{matrix}\right.\)
a, \(\dfrac{2^3-x^3}{x\left(x^2+2x+4\right)}\) = \(\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}\) = \(\dfrac{2-x}{x}\)=\(\dfrac{x-2}{-x}\)(đpcm)
b, \(\dfrac{-3x\left(x-y\right)}{y^2-x^2}\) (\(x\) \(\ne\) \(\pm\) y)
= \(\dfrac{-3x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
= \(\dfrac{3x\left(y-x\right)}{\left(y-x\right)\left(y+x\right)}\)
= \(\dfrac{3x}{x+y}\) (đpcm)
\(2x^2+6x-8=0\)
<=> \(2x^2-2x+8x-8=0\)
<=> \(2x\left(x-1\right)+8\left(x-1\right)=0\)
<=> \(\left(2x+8\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+8=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-4\\x=1\end{cases}}\)
\(2x^2-x-1=0\)
<=> \(2x^2-2x+x-1=0\)
<=> \(2x\left(x-1\right)+\left(x-1\right)=0\)
<=> \(\left(2x+1\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
\(4x^2-5x-9=0\)
<=> \(4x^2+4x-9x-9=0\)
<=> \(4x\left(x+1\right)-9\left(x+1\right)=0\)
<=> \(\left(4x-9\right)\left(x+1\right)=0\)
<=> \(\hept{\begin{cases}4x-9=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
học tốt
\(2x^2+6x-8=0\)
\(< =>2x^2-2x+8x-8=0\)
\(\Leftrightarrow2x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x+8=0\)hoặc \(x-1=0\)
\(\Leftrightarrow x=-4\)hoặc \(x=1\)
(oh) hóa trị 1 mà zn hóa trị 2=> cthh la zn(oh)2
với lại ko có oh2 dau chi co OH hoac la H2O
Câu 12:
b: \(Q=\dfrac{x^2-1+2x+1}{x\left(x+1\right)}=\dfrac{x+2}{x+1}\)