K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NS
1
R
0
AH
Akai Haruma
Giáo viên
6 tháng 2 2024
Lời giải:
$p>3$ và $p$ nguyên tố nên $p$ lẻ
$\Rightarrow p+1$ chẵn $\Rightarrow p+1\vdots 2(1)$
Mặt khác:
$p>3$ và $p$ nguyên tố nên $p$ không chia hết cho $3$
$\Rightarrow p=3k+1$ hoặc $p=3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái đề bài)
$\Rightarrow p=3k+2$
Khi đó:
$p+1=3k+3\vdots 3(2)$
Từ $(1); (2)$, mà $(2,3)=1$ nên $p+1\vdots (2.3)$ hay $p+1\vdots 6$