Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) , dấu đẳng thức xảy ra khi và chỉ khi a = b
Ta có : \(M=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\ge\frac{4}{\sqrt{1+x^2}+\sqrt{1+y^2}}\)
Mặt khác, theo bđt Bunhiacopxki : \(\left(1.\sqrt{1+x^2}+1.\sqrt{1+y^2}\right)^2\le\left(1^2+1^2\right)\left(2+x^2+y^2\right)\)
\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}\le\sqrt{20}=2\sqrt{5}\)
Do đó : \(M\ge\frac{4}{2\sqrt{5}}=\frac{2\sqrt{5}}{5}\). Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2+y^2=8\\\sqrt{1+x^2}=\sqrt{1+y^2}\end{cases}\Leftrightarrow}x=y=2\)(vì x,y >0)
Vậy \(MinM=\frac{2\sqrt{5}}{5}\Leftrightarrow x=y=2\)
Mẹo: Làm xuất hiện (xy-1)/xy
\(x^2+y^2=2x^2y^2\Leftrightarrow x^2+y^2-2xy=2xy\left(xy-1\right)\)
\(\Leftrightarrow\frac{xy-1}{xy}=\frac{x^2+y^2-2xy}{2x^2y^2}=\frac{1}{2}\left(\frac{1}{y^2}+\frac{1}{x^2}-\frac{2}{xy}\right)=\frac{1}{2}\left(\frac{1}{x}-\frac{1}{y}\right)^2\)
hm Đề sai ah
\(\sqrt{1-xy}=\frac{\sqrt{1-xy}.x^2y^2}{x^2y^2}\)\(=\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}\)
có: \(x^5+y^5=2x^2y^2\Rightarrow x^2y^2=\frac{x^5+y^5}{2}\)
\(\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(x^5-y^5\right)^2}}{2x^2y^2}=\frac{\left|x^5-y^5\right|}{2x^2y^2}\)
Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{2x^2y^2}\)hữu tỉ (đpcm)
Áp dụng BĐT Bunhiacopxki :
\(\left(x.\sqrt{1-y^2}+\sqrt{1-x^2}.y\right)^2\le\left(x^2+1-x^2\right).\left(y^2+1-y^2\right)\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{1-x^2}\le1\Rightarrow x^2+y^2\le1\)
Lại áp dụng BĐT Bunhiacopxki : \(\left(3x+4y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)\le\left(3^2+4^2\right)\)
\(\Rightarrow\left(3x+4y\right)^2\le25\Rightarrow3x+4y\le5\)