Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{5}+\frac{2}{9}\)
=\(\frac{45}{90}+\frac{18}{90}+\frac{20}{90}\)
=\(\frac{83}{90}\)
\(2\cdot2^{15}=2^{16}=2^3\cdot2^{13}=8\cdot2^{13}>7\cdot2^{13}\)
Vậy \(7\cdot2^{13}< 2\cdot2^{15}\)
.
Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )
=> 2n+1 và 6n+5 đều chia hết cho d
=> 3.(2n+1) và 6n+5 đều chia hết cho d
=> 6n+3 và 6n+5 đều chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 lẻ nên d lẻ
=> d=1
=> ƯCLN (2n+1;6n+5) = 1
=> ĐPCM
k mk nha
Gọi UCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d
6n+5 chia hết cho d
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d
\(\Rightarrow2\) chia hết cho d
\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2
\(\Rightarrowđpcm\)
Ta có: A=22+23+...+220
=>2A=23+24+...+221
=>2A-A=A=(23+24+...+221)-(22+23+...+220)
=>A=221-22
=>A+4=(221-4)+4
=>A+4=221
Mà 221 không phải là số nguyên tố (do chia hết cho 2;22;23;...;221)
Nên A+4 không phải là số nguyên tố (đpcm)
\(\left(15.3^{42}-9^{20}\right):27^3\)
\(=\left(5.3.3^{42}-3^{40}\right):3^9\)
\(=\left(5.3^{43}-3^{40}\right):3^9\)
\(=3^{40}\left(5.3^3-1\right):3^9\)
\(=3^{31}\left(5.3^3-1\right)\)
\(=134.3^{31}\)
\(\left(15.3^{42}-9^{20}\right):27^3=15.3^{42}:27^3-9^{20}:27^3\\ \\ =15.3^{42}:\left(3^3\right)^3-9^{20}:9^3:3^3=15.3^{33}-\left(3^2\right)^{20}:\left(3^2\right)^3:3^3\)
\(=15.3^{33}-3^{40}:3^6:3^3=15.3^{33}-3^{31}\\ \\ =15.3^2.3^{31}-3^{31}=135.3^{31}-3^{31}\\ \\ =3^{31}.\left(135-1\right)=3^{31}.134\)