K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

Bài 1

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)

Vậy .....

Bài 2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)

Vậy .....

Chúc bạn học tốt!

21 tháng 7 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k^2+3\cdot bk\cdot b}{11b^2k^2-8b^2}=\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(1\right)\)

\(\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k^2+3dk\cdot d}{11d^2k^2-8d^2}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrowđpcm\)

Mấy bài khác tương tự

Ta có:

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) \(\frac{5a+3b}{5c+3d}=\frac{5.bk+3b}{5.dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{b}{d}\)

\(\frac{5a-3b}{5c-3d}=\frac{5.bk-3b}{5.dk-3d}=\frac{b\left(5k-3\right)}{d\left(5k-3\right)}=\frac{b}{d}\)

\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\left(đpcm\right)\)

b) \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)

20 tháng 3 2020

Thank you so much!!! <3