K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em cần giúp câu nào em nhỉ?

Câu 4:

Vì tia Oz nằm giữa 2 tia Ox, Oy (giả thiết)

=> \(\widehat{xOz}+\widehat{zOy}=\widehat{xOy}\\ \Leftrightarrow\widehat{xOz}+35^o=145^o\\ \rightarrow\widehat{xOz}=145^o-35^o=110^o\)

Vì tia Ot là tia phân giác góc \(\widehat{xOz}\) nên ta có:

\(\widehat{xOt}=\widehat{tOz}=\dfrac{\widehat{xOz}}{2}=\dfrac{110^o}{2}=55^o\)

25 tháng 3 2017

ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ

6 tháng 4 2017

11 tháng 7 2017

Nếu là z+x thì mik biết làm nè:

Đặt x-y=2011(1)

y-z=-2012(2)

z+x=2013(3)

Cộng (1);(2);(3) lại với nhau ta được :

2x=2012=>x=1006

Từ (1) => y=-1005

Từ (3) => z=1007

11 tháng 7 2017

tick mik nha

23 tháng 10 2017

Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)

Nhân C với \(3^2\)ta có:

\(9S=3^2+3^4+3^6+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\)

\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)

Chứng minh:

Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)

\(\)UCLN(7;8)=1

\(\Rightarrow S⋮7\)

23 tháng 10 2017

Sửa lại 1 chút!

Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7

a Để N la so nguyen suy ra : 4n -5chia het 2n-1 2(2n-1)-3chia het 2n- 1 suy ra 2n-1 thuoc Ước của 3

22 tháng 3 2017

a. (4n-5)/(2n-1)=2 dư -3 vậy 2n-1 phải \(\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

xét 2n-1=1 n=1

2n-1=-1 n=0

2n-1=3 n=2

2n-1=-3 n=-1

vậy n=\(\left\{-1;0;1;2\right\}\)

b. n+2017= n+1+2016 mà 2016 chia hết cho 9 nên suy ra n+1 phải chia hết cho 9 thuộc ước của 9 (phần còn lại tự thử vào nha như câu a ý mình lười lắm)

c.vì n>3 nên n/3 dư 1 hoăc 2 ta co n= 3k+1 hoặc n= 3k+2

xét n= 3k+1 thì n^2+2018= (3k+1)^2+2018= 9k^2+1+2018=9k^2+2019=3(3k^2+673) chia hết cho 3 là hợp số

xét n=3k+2 thì n^2+2018=(3k+2)^2+2018=9k^2+4+2018=9k^2+2022=3(3k^2+674) chia hết cho 3 là hợp số

vậy n^2+2018 là hợp số

9 tháng 4 2022

Giúp mình câu 14 và15 với ạ

 

9 tháng 4 2022

Câu 14)

\(a,\\ =-\dfrac{3}{8}+\dfrac{8}{17}+\dfrac{-5}{8}-\dfrac{3}{5}+\dfrac{9}{17}\\ =\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\left(\dfrac{8}{17}+\dfrac{9}{17}\right)-\dfrac{3}{5}\\ =\left(-1\right)+1-\dfrac{3}{5}=0-\dfrac{3}{5}=\dfrac{-3}{5}\\ b,\\ =\dfrac{7}{15}.\dfrac{-15}{14}+\left(\dfrac{27}{16}-\dfrac{1}{8}\right):\dfrac{5}{8}\) 

\(=\dfrac{-1}{2}+\dfrac{25}{16}.\dfrac{8}{5}=\dfrac{-1}{2}+\dfrac{5}{2}=2\\ c,\\ =\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+.....+\dfrac{2}{99}-\dfrac{2}{100}\\ =1-\dfrac{1}{50}=\dfrac{49}{50}\) 

Câu 15

\(a,2x+\dfrac{-1}{4}=\dfrac{3}{2}\\ 2x=\dfrac{3}{2}-\dfrac{-1}{4}=\dfrac{7}{4}\\ x=\dfrac{7}{4}:2=\dfrac{7}{8}\\ b,\dfrac{15}{x}=\dfrac{-3}{4}\\ x=\dfrac{15.4}{-3}=-20\)

30 tháng 3 2022

:v lớp 10

2 tháng 2 2017

-84:4+39.37+50
=-12+1443+50
=1481
9.|40-37|-|2.13-52|
=9.l3l-l-26l
=9.3-26
=1

2 tháng 2 2017

50 là sai rùi phải là 1 mới đúng !lolang

50=1 (vì a0 =1 mà)banhqua

3 tháng 3 2017

Đây bạn

Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó :P
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.

3 tháng 3 2017

Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha hihiokthanghoavuibanh