Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACB và ΔEBC có
\(\widehat{ACB}=\widehat{EBC}\)
BC chung
\(\widehat{CBA}=\widehat{BCE}\)
Do đó:ΔACB=ΔEBC
b: ta có; ΔACB=ΔEBC
nên AC=EB
=>BE=BD
hay ΔBED cân tại B
c: Ta có: ΔBED cân tại B
nên \(\widehat{BDC}=\widehat{BEC}\)
=>\(\widehat{BDC}=\widehat{ACD}\)
6-4x=2(3-2x)= -2(2x-3)
có chung 2x-3 nhé , PT ở thành (2x-3)^2-2(2x-3) =(2x-3)(2x-3-2) =(2x-3)(2x-1)
\(\left(2x-3\right)^2+6-4x\)
\(=4x^2-12x+9+6-4x\)
\(=4x^2-16x+15\)
\(=\left(4x^2-10x\right)-\left(6x-15\right)\)
\(=2x\left(2x-5\right)-3\left(2x-5\right)\)
\(=\left(2x-3\right)\left(2x-5\right)\)
-Gọi x (đồng) là giá niêm yết của chai nước rửa tay sát khuẩn (x>0).
a là số chai nước rửa tay nhiều nhất có thể mua đc sau khi khuyến mãi
(a là số tự nhiên khác 0).
-Số tiền An mang theo là: \(9x\left(đồng\right)\)
-Giá tiền của chai nước rửa tay sát khuẩn sau khi khuyến mãi là:
\(\left[x.\left(100\%-20\%\right)\right]=\dfrac{4}{5}x\left(đồng\right)\)
-Từ đề bài ta có BĐT sau:
\(9x\ge x+a.\dfrac{4}{5}x\).
\(\Leftrightarrow9x-x-a.\dfrac{4}{5}x\ge0\)
\(\Leftrightarrow\left(8-\dfrac{4}{5}a\right)x\ge0\)
Vì \(x>0\) nên BĐT đã cho tương đương:
\(8-\dfrac{4}{5}a\ge0\)
\(\Leftrightarrow a\le10\).
Mà a là số chai nước rửa tay nhiều nhất có thể mua đc sau khi khuyến mãi.
\(\Rightarrow a=10\)
-Vậy bạn An có thể mua được 10 chai nước theo chương trình khuyến mãi trên.
a: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=4\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9x^2+18x+9=4\)
\(\Leftrightarrow45x=-5\)
hay \(x=-\dfrac{1}{9}\)
b: Ta có: \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Leftrightarrow x^3-25x-x^3-8=17\)
\(\Leftrightarrow-25x=25\)
hay x=-1
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN=BC/2=7,5(cm)
=50cm
Vì DE là đường TB của \(_{_{ }\Delta}\) BCA
DE là đường TB của \(\Delta\)BCA vì:AD=DB EB=EC