K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
29 tháng 12 2020

đặt \(\hept{\begin{cases}\sqrt[3]{3x-2}=a\\\sqrt{6-5x}=b\ge0\end{cases}}\) ta sẽ có hệ sau \(\hept{\begin{cases}3a+4b=10\\5a^3+3b^2=8\end{cases}}\)

rút thế \(b=\frac{10-3a}{4}\)xuống phương trình dưới ta có\

\(5a^3+3\left(\frac{10-3a}{4}\right)^2=8\) hay 

\(80a^3+27a^2-180a+172=0\Leftrightarrow\left(a+2\right)\left(80a^2-133a+86\right)=0\Leftrightarrow a=-2\)

hay \(\sqrt[3]{3x-2}=-2\Leftrightarrow x=-2\) thay lại thỏa mãn

vậy phương trình có nghiệm duy nhất x=-2

17 tháng 12 2019

\(3\left(\sqrt{3x-2}-2\right)+6\left(\sqrt{x-1}-1\right)-7x+14+4\left(\sqrt{3x^2-5x+2}+2\right)=0\)\(\Leftrightarrow\frac{9\left(x-2\right)}{\sqrt{3x-2}+2}+\frac{6\left(x-2\right)}{\sqrt{x-1}+1}-7\left(x-2\right)+\frac{4\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+2}-2}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{9}{\sqrt{3x-2}+2}+\frac{6}{\sqrt{x-1}+1}-7+\frac{4\left(3x+1\right)}{\sqrt{3x^2-5x+2}-2}\right)=0\)

\(\Leftrightarrow x=2\)

Dạ phần ngoặc phía sau e chưa giải đc giúp luôn vs ạ

17 tháng 12 2019

Cách của bạn Huyền sẽ khó đánh giá, nên tớ dùng hướng khác.

ĐK: \(x\ge1\)

\(PT\Leftrightarrow3\left(\sqrt{3x-2}+2\sqrt{x-1}\right)=7x-6-4+4\sqrt{\left(3x-2\right)\left(x-1\right)}\)

Đặt \(t=\sqrt{3x-2}+2\sqrt{x-1}\left(t\ge0\right)\) \(\Rightarrow t^2=4\sqrt{\left(3x-2\right)\left(x-1\right)}+7x-6\)

\(PT\Leftrightarrow3t=t^2-4\) \(\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=4\left(tm\right)\end{matrix}\right.\)

\(t=4\Rightarrow22-7x=4\sqrt{3x^2-5x+2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{22}{7}\\484-308x+49x^2=48x^2-80x+32\end{matrix}\right.\) \(\Rightarrow x=2\left(tm\right)\)

Vậy

4 tháng 12 2016

Bạn dùng liên hợp là ra mà

15 tháng 4 2017

ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).

b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.

Điều kiện x ≤ 0. Bình phương tiếp ta được:

x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).

Kết luận: Tập nghiệm S {-1}.

c) ĐKXĐ: x ≥ -2.

=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0

=> x1 =2 – (nhận), x2 = 2 + (nhận).

d) ĐK: x ≥ .

=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).

NV
16 tháng 2 2020

1/ Đặt \(\sqrt[3]{x^2+5x-2}=t\Rightarrow x^2+5x=t^3+2\)

\(t^3+2=2t-2\)

\(\Leftrightarrow t^3-2t+4=0\)

\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)

\(\Rightarrow t=-2\)

\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)

\(\Leftrightarrow x^2+5x-2=-8\)

\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

2/ \(\Leftrightarrow2x+11+3\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)

\(\Leftrightarrow\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{x+5}=0\\\sqrt[3]{x+6}=0\\\sqrt[3]{x+5}=-\sqrt[3]{x+6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x+5=-x-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x=-\frac{11}{2}\end{matrix}\right.\)

3 tháng 12 2017

a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)

\(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)

\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)

pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)

\(\Leftrightarrow t^2-2t-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)

suy ra tìm đc x

3 tháng 12 2017

câu b đặt t =\(3x^2+5x+8\)

ta có pt \(\Leftrightarrow\sqrt{t}-\sqrt{t-7}=1\)

\(\Rightarrow t=16\)

\(\Leftrightarrow3x^2+5x+8=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{3}\end{matrix}\right.\)