Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau 2 , n(2n-3)-2n(n+1)=2n^2-3n-2n^2-2n=-5n
-5chia het cho 5 nen nhan voi moi so nguyen deu chia het cho 5 suy ra n(2n-3)-2n(n+1)chia het cho 5
1,a) (x-1)(x^2+x+1)=x^3-1
VT=x3+x2+x-x2-x-1
=(x3-1)+(x2-x2)+(x-x)
=x3-1+0+0
=x3-1=VP (dpcm)
tương tự a
\(x\left(x-1\right)-3x+3=0\)
<=> \(x\left(x-1\right)-3\left(x-1\right)=0\)
<=> \(\left(x-3\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=1\end{cases}}\)
\(3x\left(x-2\right)+10-5x=0\)
<=> \(3x\left(x-2\right)+5\left(2-x\right)=0\)
<=> \(3x\left(x-2\right)-5\left(x-2\right)=0\)
<=> \(\left(3x-5\right)\left(x-2\right)=0\)
<=> \(\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)
học tốt
Bài 1:
Ta có:
\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Ta có:
\(-\left(4x-x^2-5\right)=-4x+x^2+5=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\)
\(\Rightarrow4x-x^2-5< 0\)
Bài 1:
a)\(A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)\(=x^3-xy-x^3-x^2y+yx^2-yx=-2xy\)
Thay x=1/2 và y=-100 vào biểu thức A ta được \(A=-2.\frac{1}{2}.\left(-100\right)=100\)
b)\(B=\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)=x^3+3x^2-5x-15-x^3-3x^2+4x\)=-x-15
Thay x=-1 vào biểu thức B ta được B=-(-1)-15=1-15=-14