Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Ta có:
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)
\(=1.\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)
\(=-20.\left(1+3^4+...+3^{96}\right)\)
\(\Rightarrow S⋮-20\) Hay \(S\in B\left(-20\right)\) (Đpcm)
b) Ta có:
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(\Rightarrow3S+S=\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)+\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)\)
\(\Rightarrow4S=1-3^{100}\)
\(\Rightarrow S=\dfrac{1-3^{100}}{4}\)
Mà \(S\in B\left(-20\right)\Rightarrow S\in Z\)
\(\Leftrightarrow1-3^{100}⋮4\) Hay \(3^{100}-1⋮4\Rightarrow3^{100}\div4\) dư \(1\)
Vậy \(3^{100}\) chia cho \(4\) dư \(1\) (Đpcm)
a. Ta có :
\(S=1-3+3^2-3^3+..........+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+............+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1\left(1-3+3^2-3^3\right)+............+3^{96}\left(1-3+3^2-3^3\right)\)
\(=1.\left(-20\right)+..........+3^{96}\left(-20\right)\)
\(=\left(-20\right)\left(1+......+3^{96}\right)⋮-20\)
\(\Leftrightarrow S\) là \(B\left(-20\right)\)
b. Ta có :
\(S=1-3+3^2-3^3+............+3^{98}-3^{99}\)
\(\Leftrightarrow3S=3-3^2+3^3-3^4+...............+3^{99}-3^{100}\)
\(\Leftrightarrow3S+S=\left(3-3^2+3^3-......-3^{100}\right)+\left(1-3+.....+3^{98}-3^{99}\right)\)
\(\Leftrightarrow4S=1-3^{100}\)
\(\Leftrightarrow S=\dfrac{1-3^{100}}{4}\)
Mà \(S\in B\left(-20\right)\Leftrightarrow S\in Z\)
\(\Leftrightarrow1-3^{100}⋮4\)
Hay \(3^{100}-1⋮4\)
\(\Leftrightarrow3^{100}:4\left(dư1\right)\rightarrowđpcm\)
a tong S co 100 so hang, nhom thanh 25 nhom moi nhom co bon so hang, tong chia het cho -20
b) S = 1 - 3 + 32 - 33 + ... + 398 - 399
3S= 3 - 32 + 33 - ...398 + 399 - 3100
cong tung ve cua hai danh thuc ta duoc
4S= 1- 3100 ; S = 1 - 3100/ 4
S la mot so nguyen nen 1 - 3100 chia het cho 4 hay 3100 - 1 chia het cho 4 suy ra 3100 chia het cho 4 du 1
bài này dài lắm bạn có thể tham khảo trong quyển sách nâng cao phát triển toán 6 mà