Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có vì
(2x-1)(2y+1)=-35
Vậy suy ra (2x-1) và (2y+1) thuộc ước của -35
Ư(-35)={+1;+5;+35;+7}
th1 2x-1=1 suy ra x=1
2y+1=-35 suy ra y=-18
th2
2x-1=-35 suy ra x=-17
2y+1=1 suy ra y=0
th3
2x-1=-5 suy ra x=-2
2y+1=7 suy ra y=3
th4
2x-1=7 suy ra x=8
2y+1=-5 suy ra x=-3
xong cậu liệt kê ra câu sau cũng làm như vậy
b) Vì x2; (2x - y)2 là các số chính phương mà x2 + (2x - y)2 = 106 có tận cùng là chữ số 6
=> x2 chỉ có thể tận cùng là 0; 1; 5 ; 6
Hơn nữa x2 < 106 . Do đó, x2 có thể bằng 0; 1; 16; 25; 36; 81; 100
+) x2 = 0 => (2x - y)2 = 106 ( loại)
+) x2 = 1 => (2x - y)2 = 105 ( Loại)
+) x2 = 16 => (2x - y)2 = 90 ( loại)
+) x2 = 25 => (2x - y)2 = 81 (Chọn)
x2 = 25 => x = 5 hoặc x = -5
x = 5 => (2.5 - y)2 = 81 => (10 - y)2 = 81 => 10 - y = 9 hoặc 10 - y = -9 => y = y = 1 hoặc y = 19
x = - 5 => (-10 - y)2 = 81 => -10 - y = 9 hoặc -10 - y = -9 => y = -19 hoặc y = -1
+) x2 = 36 => (2x - y)2 = 70 ( Loại)
+) x2 = 81 => (2x - y)2 = 25 ( chọn)
x2 = 81 => x = 9 hoặc x = -9
x = 9 => (18 - y)2 = 25 => 18 - y = 5 hoặc 18 - y = -9 => y = 13 hoặc y = 27
x = - 9 => (-18 - y)2 = 25 => -18 - y = 5 hoặc -18 - y = - 5 => y = -23 hoặc y = -13
+) x2 = 100 => (2x - y)2 = 6 ( loại)
Vậy.....
N = ( x - y )( x - 2y )( x - 3y )( x - 4y ) + y4
= [ ( x - y )( x - 4y ) ][ ( x - 2y )( x - 3y ) ] + y4
= ( x2 - 5xy + 4y2 )( x2 - 5xy + 6y2 ) + y4
Đặt t = x2 - 5xy + 5y2
N = ( t - y2 )( t + y2 ) + y4
= t2 - y4 + y4
= t2 = ( x2 - 5xy + 5y2 )2
Vì x, y thuộc Z => x2 thuộc Z ; -5xy thuộc Z ; 5y2 thuộc Z
=> ( x2 - 5xy + 5y2 )2 là một số chính phương
=> đpcm
\(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)
\(=\left(x-y\right)\left(x-4y\right)\left(x-2y\right)\left(x-3y\right)+y^4\)
\(=\left(x^2-5xy+4y^2\right)\left(x^2-5xy+6y^2\right)+y^4\)
Đặt \(x^2-5xy+5y^2=t\)
\(\Rightarrow\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2\)
\(=\left(x^2-5xy+5y^2\right)^2\)
Vì \(x,y\inℤ\)\(\Rightarrow\left(x^2-5xy+5y^2\right)^2\)là số chính phương
hay \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)là số chính phương ( đpcm )
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
a, Ta có: \(10^x+4.y=2017\)
Với\(x\ge1\Rightarrow10^x⋮10\)
Mà \(2017⋮10̸̸̸\)
\(\Rightarrow\)Không tồn tai x,y
Vậy \(x=0\)
\(\Rightarrow10^x+4.y=2017\)
\(\Leftrightarrow1+4y=2017\)
\(\Rightarrow4y=2016\)
\(\Rightarrow y=504\)
b,Ta có: \(2.x^2+2.y+x^2=255\)
\(\Rightarrow3.x^2+2.y=255\)
Ta có: \(3.x^2⋮3\)
Mà\(3.x^2\ge0\)
Và \(255⋮3\)
\(\Rightarrow2y⋮3\)và \(2y\le255\)
Rồi bn thử tất cả các giá trị của y và x
Mình tin bn sẽ làm đc
Cho mk 1 k nha
Ai k mk k cho