Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2\):
\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)
f(x)=6x3−7x2−16x+m
Do �(�)f(x) chia hết 2�−52x−5, theo định lý Bezout:
�(52)=0⇒6.(52)3−7.(52)2−16.(52)+�=0f(25)=0⇒6.(25)3−7.(25)2−16.(25)+m=0
⇒�=−10⇒m=−10
Khi đó �(�)=6�3−7�2−16�−10f(x)=6x3−7x2−16x−10
Số dư phép chia cho 3�−23x−2:
�(23)=6.(23)3−7.(23)2−16.(23)−10=−22f(32)=6.(32)3−7.(32)2−16.(32)−10=−22
a2+b2=a3+b3=1
suy ra a = 1 hoặc b = 1
suy ra a4+b4cũng =1
bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé
Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)
1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)
\(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2
2) gọi dư của phép chia là ax+b
ta có f(1) = a+b =51
f(-1) = -a+b =1
=> b =26 ; a =25
Vậy dư là : 25x + 26
để f(x) và g(x) cùng chia hết cho -2x+6
=>\(\hept{\begin{cases}f\left(3\right)=0\\g\left(3\right)=0\end{cases}}\)<=>\(\hept{\begin{cases}\frac{3867}{20}-m+n=0\\\frac{1911}{11}+3m-n=0\end{cases}}\)<=>\(\hept{\begin{cases}-m+n=-\frac{3867}{20}\\3m-n=-\frac{1911}{11}\end{cases}< =>\hept{\begin{cases}m=-183,5386364\\n=-376,8886364\end{cases}}}\)
Giải trên máy Casio fx-570MS ( Casio fx-570 tương tự)
Nhắc lại: Đa thức P(x) chia hết cho ax + b khi và chỉ khi P(-ba)=0
Dư của phép chia đa thức P(x) cho ax + b là P(-ba)
Quy trình bấm phím như sau:
1. Ghi vào màn hình: 6A3 -7A2 -16A
cám ơn bạn nha!