K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

đặt A=1+2+2^2+2^3+2^4+2^5+2^6+2^7

2A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8

2A-A=(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8)-(1+2+2^2+1^3+2^4+2^5+2^6+2^7)

A=2^8-1

A=256-1=255

255 chia hết cho 3

nên 1+2+2^2+2^3+2^4+2^5+2^6+2^7 cũng chia hết cho 3

21 tháng 7 2017

A = 1 + 2 + 22 + 23 + ...+ 26 + 27 

= ( 1 + 2) + ( 22 +23 ) +( 24 + 25 ) + ( 26 + 27)           ''   có tất cả 8 số chia thành 4 cặp nhé ''

=3 + 22. ( 1 + 2) +  24.(1+2) + 26. ( 1 + 2) 

= 3 + 22 .3 + 24.3+ 2.3

= 3. ( 1 +2+ 24 + 26 ) chia hết cho 3.

23 tháng 7 2017

   2 + 21 + 2+ 2+ ... + 211

= 20 + 2+ 22 + 23 + ... + 211

= 2. ( 1 + 2 + 4 + 8 + 16 + 32 ) + 26 . ( 1 + 2 + 4 + 8 + 16 + 32 )

= 2. 63 + 26 . 63

= ( 2+ 2) . 63 

Do 63 : 9 nên ( 2+ 2) . 63 chia hết cho 9 hay 2 + 21 + 2+ 23 + .. + 211 chia hết cho 9 

Vậy 2 + 21 + 2+ 2+ ... + 211 chia hết cho 9

17 tháng 11 2019

Nhanh lên mọi người ơi 

2+22+23+....+28+29

=(2+22+23)+....+(27+28+29)

=(2+22+23)+....+26.(2+22+23)

=14+...+26+14

=14.(1+.....+26\(⋮\)14

Vậy 2+22+23+...+28+29  \(⋮\)14

Chúc bn học tốt

Vì a có 60 lũy thừa ( mà 60 chia hết cho 3 ) nên ta có thể chia A thành các nhóm gồm mỗi nhóm 3 lũy thừa như sau : 

A = \(2+2^2+2^3+...+2^{59}+2^{60}\)

A = \(\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

A = \(2.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)

A = \(2.7+...+2^{58}.7\)

A = \(7.\left(2+...+2^{58}\right)\)

Vậy A \(⋮\)7

Ủng hộ mik nhá ^_^"

8 tháng 9 2017

A=2+22+23+..+259+260

A=2+22+23+...+2*257*22*257+23*257

A=(2+22+23)+..+(2*22*23)*(257+257+257)

A=14+....+14*(257+257+257)

Vì 14 chia hết cho 7

=> 14+...+14*(257+257+257)

do đó : A chia hết cho 7

25 tháng 9 2021

\(A=1+2+2^2+2^3+...+2^{2021}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)

25 tháng 9 2021

\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)

28 tháng 1 2024

\(S=1+2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2022}+2^{2023}\)

trừ vế với vế ta được : 

\(2S-S=2^{2023}-1\)

\(\Rightarrow S=2^{2023}-1\)