K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

a) \(6^3:3^3=216:27=8\)

\(\left(6:3\right)^3=2^3=8\)

Vậy \(6^3:3^3=\left(6:3\right)^3\)

b) \(10^2:5^2=100:25=4\)

\(\left(10:5\right)^2=2^2=4\)

Vậy \(10^2:25^2=\left(10:5\right)^2\)

30 tháng 9 2016

cảm ơn bn

 

17 tháng 8 2016

Bài 1:

a) \(2^8.2.4=2^9.2^2=2^{11}\)

b) \(8^5:64=8^5:8^2=8^3\)

c) \(3^7:9=3^7:3^2=3^5\)

d) \(9^{17}.81=9^{17}.9^2=9^{19}\)

e) \(x^6.x.x^2=x^9\)

Bài 2:

a) \(2^x-15=17\)

\(\Rightarrow2^x=32\)

\(\Rightarrow2^x=2^5\)

\(\Rightarrow x=5\)

Vậy x = 5

b) \(2.3^x=162\)

\(3^x=162:2\)

\(3^x=81\)

\(\Rightarrow3^x=3^4\)

\(\Rightarrow x=4\)

Vậy x = 4

c) \(5.x.5^2=10\)

\(\Rightarrow x.5^3=10\)

\(\Rightarrow x.125=10\)

\(\Rightarrow x=10:125\)

\(\Rightarrow x=\frac{2}{25}\)

Vậy \(x=\frac{2}{25}\)

d) \(5.x^2-1=124\)

\(\Rightarrow5.x^2=125\)

\(\Rightarrow x^2=125:5\)

\(\Rightarrow x^2=5^2\)

\(\Rightarrow x=\pm5\)

Vậy \(x=\pm5\)

 

17 tháng 8 2016

Câu 1:

a)28.2.4=28.2.22=211

b)85:64=85:82=83

c)37:9=37:32=35

d)917.81=917.92=919

e)x6.x.x2=x9

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(109.5^2-3^2.25\)

\(=109.25-9.25\)

\(=25\left(109-9\right)\)

\(=25.100\)

\(=2500\)

c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)

\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)

\(=\left(5^2.6-20.5\right):10-20\)

\(=\left(25.6-20.5\right):10-20\)

\(=\left(150-100\right):10-20\)

\(=50:10-20\)

\(=5-20\)

\(=-15\)

27 tháng 9 2016

Ta có:

\(5^{299}< 5^{300}=\left(5^3\right)^{100}=125^{100}\)

\(3^{501}>3^{500}=\left(3^5\right)^{100}=243^{100}\)

Vì \(125^{100}< 243^{100}\) nên \(5^{299}< 125^{100}< 243^{100}< 3^{501}\) hay \(5^{299}< 5^{501}\)

Vậy \(5^{299}< 3^{501}\)

12 tháng 7 2017

Bài 1:

\(A=\dfrac{2}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{89.93}\)

\(A=\dfrac{2}{1.5}+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{89}-\dfrac{1}{93}\right)\)

\(A=\dfrac{2}{5}+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{93}\right)\)

\(A=\dfrac{2}{5}+\dfrac{1}{4}.\dfrac{88}{465}\)

\(A=\dfrac{2}{5}+\dfrac{22}{465}=\dfrac{208}{465}\)

12 tháng 7 2017

1. Mk sửa lại đề bài như sau:

\(A=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{89.93}\)

\(\Rightarrow4A=\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{89.93}\)

\(4A=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{89}-\dfrac{1}{93}\)

\(4A=1-\dfrac{1}{93}\)

\(4A=\dfrac{92}{93}\)

\(A=\dfrac{92}{93}:4\)

\(A=\dfrac{23}{93}\)

2. Mk cux sửa lại đề bài:

\(A=3+3^2+3^3+3^4+3^5+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=3\left(1+3+9+27\right)+...+3^{97}\left(1+3+9+27\right)\)

\(=3.40+...+3^{97}.40\)

\(=\left(3+3^{97}\right)⋮4.10\)

\(\Rightarrow A⋮4;10\)

9 tháng 5 2016

Ta có : 

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)

Ta lại có : 

108 - 1 > 108 - 3

=> \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

=> \(1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)

\(=>A< B\)

9 tháng 5 2016

thanks bạn nhìu nhavui

28 tháng 7 2016

bạn hỏi vì sao thì là vì 4+4=8, 4+4+8=16,4+4+8+16=32,4+4+8+16+32=64,.....,mà 220=1048576=4+4+8+16+32+64+...=1048576 nên A= 1068576 x 2=2097152

28 tháng 7 2016

có! vì A= 2097152 và số đó chia hết cho 1024

9 tháng 7 2017

b)\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+....+2^{96}.31\)

\(=31.\left(2+....+2^{96}\right)⋮31\)

Vậy...

9 tháng 7 2017

a) \(5+5^2+5^3+...+5^{2004}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{2003}+5^{2004}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{2003}.6\)

\(=6.\left(5+5^3+...+5^{2003}\right)⋮6\)

Vậy....

\(5+5^2+5^3+...+5^{2004}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6+\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2002}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{2002}.31\)

\(=31.\left(5+5^4+...+5^{2002}\right)⋮31\)

Vậy...

Trường hợp 3 làm tương tự để chứng minh

8 tháng 8 2016

mk thấy bn đăng bài này 5 lần oy đó

8 tháng 8 2016

đúng zậy khocroi
 

21 tháng 9 2017

n0=2016

\(\Rightarrow n\in\left\{\varnothing\right\}\)

21 tháng 9 2017

n0 = 216 ( vô lý )

Vì n0 = 1 nên n \(\in\) { \(\varnothing\) }