K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

Bài 1:

Gọi số xe đội 1,2,3 lần lượt là a,b,c(xe;a,b,c∈N*)

Vì số hàng bằng nhau nên số xe tỉ lệ nghịch với số ngày

Do đó \(3a=4b=5c\Rightarrow\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{4}}=\dfrac{c}{\dfrac{1}{5}}\)

Áp dụng tc dtsbn:

\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{4}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b+c}{\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}}=\dfrac{94}{\dfrac{47}{60}}=120\\ \Rightarrow\left\{{}\begin{matrix}a=40\\b=30\\c=24\end{matrix}\right.\)

Vậy ...

12 tháng 11 2021

Bài 2:

Gọi số máy 3 đội lần lượt là a,b,c(máy;a,b,c∈N*)

Vì số máy tỉ lệ nghịch với thời gian nên \(3a=5b=6c\Rightarrow\dfrac{3a}{30}=\dfrac{5b}{30}=\dfrac{6c}{30}\Rightarrow\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}\)

Áp dụng tc dtsbn:

\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{10+6+5}=\dfrac{42}{21}=2\\ \Rightarrow\left\{{}\begin{matrix}a=20\\b=12\\c=10\end{matrix}\right.\)

Vậy ...

29 tháng 10 2021

a/ Xét tg vuông ABE và tg vuông PBE có

BE chung 

\(\widehat{ABE}=\widehat{PBE}\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta PBE\) (cạnh huyền và góc nhọn tương ứng bằng nhau)

b/ Xét tg ABI và tg PBI có

\(\Delta ABE=\Delta PBE\Rightarrow BA=BP\) 

BI chung

\(\widehat{ABI}=\widehat{PBI}\left(gt\right)\)

\(\Rightarrow\Delta ABI=\Delta PBI\left(c.g.c\right)\Rightarrow AI=IP\) (1)

Xét tg vuông ACF và tg vuông QCF có 

CF chung

\(\widehat{ACF}=\widehat{QCF}\left(gt\right)\)

\(\Rightarrow\Delta ACF=\Delta QCF\) (cạnh huyền và góc nhọn tương ứng bằng nhau) 

Xét tg ACI và tg QCI có

\(\Delta ACF=\Delta QCF\Rightarrow AC=QC\)

CI chung

\(\widehat{ACI}=\widehat{QCI}\left(gt\right)\)

\(\Rightarrow\Delta ACI=\Delta QCI\left(c.g.c\right)\Rightarrow AI=IQ\) (2)

Từ (1) và (2) \(\Rightarrow AI=IP=IQ\)

29 tháng 10 2021

c/

Xét tg QIP có

IQ=IP => tg QIP cân ở I

Mà \(ID\perp BC\)

\(\Rightarrow DQ=DP\) (Trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến)

=> D là trung điểm của PQ

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE
\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AB=AC

hay ΔABC cân tại A

b: XétΔABC có 

AD là đường cao

CH là đường cao

AD cắt CH tại D

Do đó: D là trực tâm của ΔABC

=>BD vuông góc với AC

15 tháng 10 2017

xinh nhỉ banh

27 tháng 11 2016

sách gì thế bn

27 tháng 11 2016

30 người → 8 giờ

40 người→ ? giờ

lời giải thì bn tự đặt nha! Bây giờ bn lấy 30 nhân cho 8 rồi chia cho 40 nha bn. Chúc bn thành cônghihi

15 tháng 2 2017

cho mik bản dịch và cách làm nha

15 tháng 2 2017

nhưng gửi vào link mik nhé ko thì bọn bn mik sẽ học luôn mấthehe

1 tháng 3 2017

\(\frac{B}{A}=\frac{2^2+4^2+6^2+...+200^2}{1^2+2^2+...+100^2}=\frac{\left(1.2\right)^2+\left(2.2\right)^2+...+\left(100.2\right)^2}{1^2+2^2+...+100^2}\)

\(=\frac{1^2.2^2+2^2.2^2+...+100^2+2^2}{1^2+2^2+...+100^2}\)

\(=\frac{\left(1^2+2^2+...+100^2\right).2^2}{1^2+2^2+100^2}\)

\(=2^2=4\)

Vậy \(\frac{B}{A}=4\)

1 tháng 3 2017

Sửa lại: ( tại nhìn bé quá, tưởng mũ 3 -> mũ 2 )

\(\frac{B}{A}=\frac{2^3+4^3+6^3+...+200^3}{1^3+2^3+...+100^3}\)

\(\Rightarrow\frac{B}{A}=\frac{\left(1.2\right)^3+\left(2.2\right)^3+...+\left(100.2\right)^3}{1^3+2^3+...+100^3}\)

\(\Rightarrow\frac{B}{A}=\frac{1^3.2^3+2^3.2^3+...+100^3.2^3}{1^3+2^3+...+100^3}\)

\(\Rightarrow\frac{B}{A}=\frac{\left(1^3+2^3+...+100^3\right)2^3}{1^3+2^3+...+100^3}\)

\(\Rightarrow\frac{B}{A}=2^3=8\)

Vậy \(\frac{B}{A}=8\)