Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tg vuông ABE và tg vuông PBE có
BE chung
\(\widehat{ABE}=\widehat{PBE}\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta PBE\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
b/ Xét tg ABI và tg PBI có
\(\Delta ABE=\Delta PBE\Rightarrow BA=BP\)
BI chung
\(\widehat{ABI}=\widehat{PBI}\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta PBI\left(c.g.c\right)\Rightarrow AI=IP\) (1)
Xét tg vuông ACF và tg vuông QCF có
CF chung
\(\widehat{ACF}=\widehat{QCF}\left(gt\right)\)
\(\Rightarrow\Delta ACF=\Delta QCF\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
Xét tg ACI và tg QCI có
\(\Delta ACF=\Delta QCF\Rightarrow AC=QC\)
CI chung
\(\widehat{ACI}=\widehat{QCI}\left(gt\right)\)
\(\Rightarrow\Delta ACI=\Delta QCI\left(c.g.c\right)\Rightarrow AI=IQ\) (2)
Từ (1) và (2) \(\Rightarrow AI=IP=IQ\)
c/
Xét tg QIP có
IQ=IP => tg QIP cân ở I
Mà \(ID\perp BC\)
\(\Rightarrow DQ=DP\) (Trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến)
=> D là trung điểm của PQ
Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)
Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)
Dấu \("="\) xảy ra khi:
\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)
Vậy \(1\le x\le5.\)
Cho mk thêm cái ạ:
\(x\in\left\{1;2;3;4;5\right\}\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
\(a,=\left(\dfrac{17}{14}-\dfrac{5}{7}\right)+\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\dfrac{11}{125}=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{11}{125}=\dfrac{11}{125}\\ b,=\left(\dfrac{11}{24}+\dfrac{13}{24}\right)-\left(\dfrac{5}{41}+\dfrac{36}{41}\right)+\dfrac{1}{2}=1-1+\dfrac{1}{2}=\dfrac{1}{2}\\ c,=\left(-12\right)\left(-\dfrac{1}{12}\right)^2=\dfrac{12}{12^2}=\dfrac{1}{12}\\ d,=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)=-\dfrac{891}{25}:4=-\dfrac{891}{100}\\ e,\dfrac{17}{12}\cdot\left(\dfrac{1}{20}\right)^2=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\\ f,=\dfrac{3}{8}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{3}{8}\cdot\left(-14\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{3}{8}\cdot\dfrac{43}{3}+\dfrac{1}{4}=\dfrac{43}{8}+\dfrac{1}{4}=\dfrac{45}{8}\\ g,=\dfrac{5}{3}\left(-16\dfrac{2}{7}+28\dfrac{2}{7}\right)=\dfrac{5}{3}\cdot12\dfrac{2}{7}=\dfrac{5}{3}\cdot\dfrac{86}{7}=\dfrac{430}{21}\)
\(h,=\dfrac{7}{2}\left(-\dfrac{3}{4}+\dfrac{5}{13}-\dfrac{9}{4}-\dfrac{8}{13}\right)=\dfrac{7}{2}\left(-3-\dfrac{3}{13}\right)=\dfrac{7}{2}\left(-\dfrac{42}{13}\right)=-\dfrac{147}{13}\\ i,=9^2-25^2+8^2=81-625+64=-480\\ k,=\left(1-1\right)-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(2-2\right)-\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(3-3\right)-\left(\dfrac{3}{4}-\dfrac{1}{4}\right)+4\\ =-1-1-1+4=1\)