Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi góc trong của a là a1, ngoài là a2, b cũng vậy nhé bạn.
a)xét tam giác aeb ta có :\(\frac{a1}{2}\) +\(\frac{b1}{2}\)+ e = 180
=> e= 180-(\(\frac{a1}{2}+\frac{b1}{2}\))
ta có a1+ b1= 360 -(c+d)
=> e = 180 - (\(\frac{360-\left(c+d\right)}{2}\)) = \(\frac{c+d}{2}=>e=\frac{1}{2}\left(c+d\right)\)
b) ta có fab đối đỉnh \(\frac{a2}{2}\) và fba đối đỉnh \(\frac{b2}{2}\)
trong tam giác afb có fab + fba + j = 180
=> j = 180- ( \(\frac{a2}{2}+\frac{b2}{2}\) ) mà 360- (a1+b1)= a2+b2
=> j = 180 - \(\left(\frac{360-\left(a1+b1\right)}{2}\right)\) = \(\frac{a1+B1}{2}\)
vậy j = \(\frac{1}{2}\left(a1+b1\right)\)
a ) Ta có :
Góc BAD + ADC = 180o
=> \(\frac{1}{2}gocBAD+\frac{1}{2}gocADC=\frac{1}{2}.180^o\)
=> \(gocMAD+gocMDA=90^o\)
=> Xét \(\Delta MAD\)có \(gocMAD+gocMDA=90^o\Rightarrow gocAMD=90^o\)
=> Sử dụng góc kề bù ta suy ra \(gocAMD=gocAMF=gocDME=90^o\)
Xét \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)
\(gocDAM=gocFAM\)( AE là phân giác góc A )
Chung cạnh AM
\(gocAMD=gocAMF\left(cmt\right)\)
=> \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)
=> M là trung điểm DF
Tớ chỉ làm được tới đây
bài này nếu mk ko nhầm thì là bài tự luận chương tứ giác của bài giảng lp 8,có lẽ bn nên tự làm hay hơn
Gợi ý:Áp dụng đ/lý tổng các góc trong 1 tứ giác và tận dụng triệt để các gt về tia p/giác