Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề gõ sai kìa
2A = 2^1 + 2^2 + 2^3 + ..+ 2^20
2A - A = A = 2^20 - 2^0
=> A = 2^20 - 1 ; B = 2^20
=> A;B là 2 stn liên tiếp
Trả lời:
A = 20 + 21 + 22 + 23 + ... + 219
=> 2A = 21 + 22 + 23 + 24 + ... + 220
=> 2A - A = ( 21 + 22 + 23 + 24 + ... + 220 ) - ( 20 + 21 + 22 + 23 + ... + 219 )
=> A = 21 + 22 + 23 + 24 + ... + 220 - 20 - 21 - 22 - 23 - ... - 219
=> A = 220 - 1
Mà B = 220
nên A và B là 2 số tự nhiên liên tiếp
\(2A=2^1+2^2+2^3+2^4+...+2^{2010}.\)
\(A=2A-A=2^{2010}-2^0=2^{2010}-1\)
=> A và B là 2 số tự nhiên liên tiếp
Ta có: A=1+2+22+...+22009
=>2A=2+22+23+....+22010
=>2A-A=A=(2+22+23+...+22010)-(1+2+22+...+22009)
=>A=22010-1
=>A và B là 2 số tự nhiên liên tiếp (đpcm)
Cho A= Và B = 22020
Chứng minh rằng A và B là 2 số tự nhiên liên tiếp
\Giups mình nhé
Ta có :
A= 20+21+22+23+......+ 22018+22019
2A=2(20+21+22+23+......+ 22018+22019) = 21+22+23+......+ 22018+22019 + 22020
2A-A= (21+ 22+23+......+ 22018+22019 + 22020) - ( 20+21+...+22019)
A= 22020-20 = 22020 -1
vì A= 22020 - 1 , B=22020 suy ra A và B là 2 số tự nhiên liên tiếp .
vậy A và B là 2 số tự nhiên liên tiếp.
ta có
\(2A=2+2^2+..+2^{2019}=\left(1+2+2^2..+2^{2018}\right)+2^{2019}-1\)
hay \(2A=A+2^{2019}-1\Leftrightarrow A=2^{2019}-1\)
vì vậy A và B là hai số tự nhiên liên tiếp
Ta có:
\(A=1+2+2^2+...+2^{2013}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2014}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2014}\right)-\left(1+2+2^2+...+2^{2013}\right)\)
\(\Rightarrow A=2^{2014}-1\)
Vì \(2^{2014}\) và \(2^{2014}-1\) hơn kém nhau 1 đơn vị nên \(2^{2014}-1\) và \(2^{2014}\) là 2 số tự nhiên liên tiếp.
\(\Rightarrow A,B\) là 2 số tự nhiên liên tiếp
\(\Rightarrowđpcm\)
Ta có : \(A=1+2+2^2+...+2^{19}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{20}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{20}\right)-\left(1+2+2^2+...+2^{19}\right)\)
hay \(A=2^{20}-1\)
\(\Rightarrow A\)và \(B\)là hai số tự nhiên liên tiếp .
\(A=2^0+2^2+2^2+2^3+...+2^{19}\\ \Rightarrow A=1++2.2^2+2^3+...+2^{19}\\ \Rightarrow A=1+2^3+2^3+...+2^{19}\\ \Rightarrow A=1+2.2^3+...+2^{19}\\ \Rightarrow A=1+2^4+...+2^{19}\\ ....\\ \Rightarrow A=1+2^{20}\)