Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải câu BPT, câu pt là 1 phần nhỏ của nó, bạn tự giải:
- Với \(x=0\Rightarrow\frac{1}{16}\ge0\) (thỏa mãn) là 1 nghiệm của BPT
- Với \(x\ne0\Rightarrow x^2>0\) BPT tương đương:
\(\frac{\left(x^2+3x+\frac{1}{4}\right)\left(x^2-x+\frac{1}{4}\right)}{x^2}\ge12\)
\(\Leftrightarrow\left(x+\frac{1}{4x}+3\right)\left(x+\frac{1}{4x}-1\right)\ge12\)
Đặt \(x+\frac{1}{4x}-1=t\)
\(\Leftrightarrow\left(t+4\right)t\ge12\Leftrightarrow t^2+4t-12\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
TH1: \(t\ge2\Leftrightarrow x+\frac{1}{4x}-3\ge0\Leftrightarrow\frac{4x^2-12x+1}{4x}\ge0\) \(\Rightarrow\left[{}\begin{matrix}0< x\le\frac{3-2\sqrt{2}}{2}\\x\ge\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)
TH2: \(t\le-6\Leftrightarrow x+\frac{1}{4x}+5\le0\Leftrightarrow\frac{4x^2+20x+1}{4x}\le0\) \(\Rightarrow\left[{}\begin{matrix}x\le\frac{-5-2\sqrt{6}}{2}\\\frac{-5+2\sqrt{6}}{2}\le x< 0\end{matrix}\right.\)
Kết hợp lại ta được nghiệm của BPT: \(\left[{}\begin{matrix}x\le\frac{-5-2\sqrt{6}}{2}\\\frac{-5+2\sqrt{6}}{2}\le x\le\frac{3-2\sqrt{2}}{2}\\x\ge\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)
a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)
hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)
\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)
\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)
b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)
Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)
Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được
\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)
(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)
(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)
a/ ĐKXĐ: \(0\le x\le1\)
Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow2\sqrt{x-x^2}=a^2-1\)
\(\Rightarrow1+\frac{a^2-1}{2}=a\Leftrightarrow a^2-2a+1=0\Rightarrow a=1\)
\(\Rightarrow\sqrt{x}+\sqrt{1-x}=1\)
\(\Leftrightarrow1+2\sqrt{x-x^2}=1\)
\(\Rightarrow x-x^2=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b/ Đặt \(\sqrt{x+5}=a\ge0\Rightarrow a^2-x=5\)
\(x^2+a=a^2-x\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+x+a=0\)
\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\Rightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+5}=-x\left(x\le0\right)\\\sqrt{x+5}=x+1\left(x\ge-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2\\x+5=x^2+2x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-5=0\\x^2+x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{21}}{2}\left(l\right)\\x=\frac{1-\sqrt{21}}{2}\\x=\frac{-1+\sqrt{17}}{2}\\x=\frac{-1-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)
mình nghĩ pt (P) : y = ax^2 - bx + c chứ ?
a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)
(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1)
(P) đi qua điểm C(-1;1) <=> \(a+b+c=1\)(2)
Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)
Vậy pt Parabol có dạng \(x^2-x-1=y\)
Bài 1b
(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)
(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)
Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)
tương tự nhé