Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
ta tính \(y'=3x^2-6x-m\)
để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R
mà ta có \(y'=3x^2-6x-m\)>0 khi và chỉ khi \(\Delta=b^2-4ac<0\) do hệ số a của y' >0
mà \(\Delta=6^2+12m=36+12m<0\Rightarrow m<-3\)
vậy với m<-3 thì hàm số đồng biến trên R
Bài 1:
Hàm đồng biến khi mà \(y'=x^2-2mx-2\geq 0\forall x\in\mathbb{R}\)
\(\Leftrightarrow \Delta'=m^2+2\leq 0\). Điều này vô lý nên không tồn tại $m$ thỏa mãn
Bài 2:
Hàm đồng biến khi mà \(y'=-\frac{4x^2+4x+3+2m}{(2x+1)^2}\geq 0\) với mọi $x$ thuộc TXĐ
\(\Leftrightarrow 4x^2+4x+3+2m\leq 0\forall x\in\mathbb{R}\setminus \frac{-1}{2}\)
\(\Leftrightarrow m\leq -2(x^2+2x+1,5)\Leftrightarrow m\leq \min (-2x^2-2x-1,5)\)
Điều này vô lý vì không tồn tại min của \(-2x^2-2x-1,5\forall x\in\mathbb{R}\setminus\frac{-1}{2}\)
Vậy không tồn tại $m$ thỏa mãn.
a) Tập xác định: D = R\{m}
Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:
y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2
b) Tập xác định: D = R\{m}
Hàm số nghịch biến trên từng khoảng khi và chỉ khi:
y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0
[m<1m>4[m<1m>4
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3
d) Tập xác định: D = R
Hàm số đồng biến trên R khi và chỉ khi:
y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3
\(y=-\frac{x^3}{3}+2x^2-mx+1\)
\(y'=-x^2+4x-m\)
Để hàm số luôn nghịch biến trên \(ℝ\)thì \(y'\le0\)với mọi \(x\inℝ\).
Suy ra \(-x^2+4x-m\le0\)với mọi \(x\inℝ\).
\(\Leftrightarrow\hept{\begin{cases}-1< 0\\\Delta'\le0\end{cases}}\Leftrightarrow4+m\le0\Leftrightarrow m\le-4\).
\(y'=3x^2-4mx-m-1\)
Hàm đồng biến trên (0;2) khi \(\forall x\in\left(0;2\right)\) ta có:
\(y'\ge0\Leftrightarrow3x^2-4mx-m-1\ge0\)
\(\Leftrightarrow3x^2-1\ge m\left(4x+1\right)\) (1)
Do \(4x+1>0\) ; \(\forall x\in\left(0;2\right)\) nên (1) tương đương:
\(m\le\dfrac{3x^2-1}{4x+1}\Leftrightarrow m\le\min\limits_{\left(0;2\right)}\dfrac{3x^2-1}{4x+1}\)
Xét hàm \(f\left(x\right)=\dfrac{3x^2-1}{4x+1}\) trên \(\left(0;2\right)\)
\(f'\left(x\right)=\dfrac{12x^2+6x+4}{\left(4x+1\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)>f\left(0\right)=-1\Rightarrow m\le-1\)
\(y'=\left(2m+1\right)\cos x+3-m\)
Hàm số đã cho đồng biến trên R \(\Leftrightarrow y'\ge0,\forall x\in R\)
\(\Leftrightarrow\left(2m+1\right)\cos x\le m-3\) (1)
*TH: \(2m+1< 0\Leftrightarrow m< \frac{-1}{2}\), ta có
\(\left(1\right)\Leftrightarrow\cos x\ge\frac{m-3}{2m+1}\) (không thoả với mọi x)
*TH: \(2m+1>0\Leftrightarrow m>\frac{-1}{2}\), ta có
\(\left(1\right)\Leftrightarrow\cos x\le\frac{m-3}{2m+1}\) (2)
(2) đúng với mọi x khi và chỉ khi \(\left|\frac{m-3}{2m+1}\right|>1\Leftrightarrow\left[\begin{array}{nghiempt}m< -4\\m>\frac{2}{3}\end{array}\right.\)
kết hợp \(m>\frac{-1}{2}\) ta có m > 3/2 là giá trị cần tìm
\(y=\dfrac{2x-1}{x+m}\Rightarrow y'=\dfrac{2m+1}{\left(x+m\right)^2}\)
Hàm nghịch biến trên miền xác định khi:
\(2m+1< 0\Rightarrow m< -\dfrac{1}{2}\)
a/ \(y'=x^2-mx-2\)
Để hàm số đồng biến trên R \(\Leftrightarrow y'\ge0\) \(\forall x\in R\)
\(\Leftrightarrow\Delta=m^2+8< 0\) (vô lý)
Vây không tồn tại m thỏa mãn
b/ \(y=\frac{x^2-2mx-1}{x-1}\Rightarrow y'=\frac{\left(2x-2m\right)\left(x-1\right)-\left(x^2-2mx-1\right)}{\left(x-1\right)^2}\)
\(y'=\frac{x^2-2x+2m+1}{\left(x-1\right)^2}=\frac{\left(x-1\right)^2+2m}{\left(x-1\right)^2}\)
Để hàm số đồng biến trên TXĐ
\(\Leftrightarrow y'\ge0\) \(\forall x\in D\Leftrightarrow\frac{\left(x-1\right)^2+m}{\left(x-1\right)^2}\ge0\) \(\forall x\Rightarrow m\ge0\)