Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
\(B=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)......\left(\frac{1}{100^2}-1\right).\)
\(B=\frac{-3}{2^2}\times\frac{-8}{3^2}\times\frac{-15}{4^2}\times.....\times\frac{-9999}{100^2}\)
\(B=-\left(\frac{3}{2^2}\times\frac{8}{3^2}\times.....\times\frac{9999}{100^2}\right)\)(vì A là tích của 99 thừa số âm nên kết quả là âm )
\(B=-\left(\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times.....\times\frac{99.101}{100.100}\right)\)
\(B=-\left(\frac{1.2.3...99}{2.3.4.....100}\times\frac{3.4.5....101}{2.3.4....100}\right)\)
\(B=-\left(\frac{1}{100}\times\frac{101}{2}\right)\)
\(B=-\frac{101}{200}\)
Bài kiểm tra tôt snhaats dựa vào câu trl khác đi, lớp 5 ko rõ bằng lớp 7 đâu!
Cho mình làm lại
TL:
Có 2 số nguyên thoả mãn là :
X + Y = 7
HT
a) Xét ΔABM và ΔACM có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
b) Xét ΔCBN và ΔCDN có
CB=CD(gt)
\(\widehat{BCN}=\widehat{DCN}\)(CN là tia phân giác của \(\widehat{BCD}\))
CN chung
Do đó: ΔCBN=ΔCDN(c-g-c)
⇒\(\widehat{CNB}=\widehat{CND}\)(hai góc tương ứng)
mà \(\widehat{CNB}+\widehat{CND}=180^0\)(hai góc kề bù)
nên \(\widehat{CNB}=\widehat{CND}=\dfrac{180^0}{2}=90^0\)
hay CN⊥BD(đpcm)
c) Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC
Xét ΔABM vuông tại M có
\(\widehat{ABM}+\widehat{BAM}=90^0\)(hai góc nhọn phụ nhau)(3)
Xét ΔBCN vuông tại N có
\(\widehat{NBC}+\widehat{BCN}=90^0\)(hai góc nhọn phụ nhau)(4)
Từ (3) và (4) suy ra \(\widehat{BAM}=\widehat{BCN}\)
mà \(\widehat{BAM}=\dfrac{1}{2}\cdot\widehat{BAC}\)(AM là tia phân giác của \(\widehat{BAC}\))
và \(\widehat{BCN}=\dfrac{1}{2}\cdot\widehat{DCB}\)(CN là tia phân giác của \(\widehat{DCB}\))
nên \(\widehat{BAC}=\widehat{DCB}\)(5)
Xét ΔABC có \(\widehat{ECB}\) là góc ngoài tại đỉnh C
nên \(\widehat{ECB}=\widehat{ABC}+\widehat{BAC}\)(Định lí góc ngoài của tam giác)(6)
Xét ΔBDC có \(\widehat{ADC}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADC}=\widehat{DBC}+\widehat{DCB}\)(Định lí góc ngoài của tam giác)
hay \(\widehat{ADC}=\widehat{ABC}+\widehat{DCB}\)(7)
Từ (5), (6) và (7) suy ra \(\widehat{ECB}=\widehat{ADC}\)
Xét ΔBCE và ΔCDA có
BC=CD(gt)
\(\widehat{ECB}=\widehat{ADC}\)(cmt)
CE=DA(gt)
Do đó: ΔBCE=ΔCDA(c-g-c)
⇒BE=CA(hai cạnh tương ứng)
mà BA=CA(gt)
nên BA=BE(đpcm)