Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/A=|x-2017|+|x-2018|
=|x-2017|+|2018-x|
=>Alớn hơn hoặc bằng |x-2017+2018-x|=1
Dấu = xảy ra khi:(x-2017+2018-x) lớn hơn hoặc bằng 0
Vậy GTNN của A=1khi 2017 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2018
\(\left|y-z\right|< 1\)
mà \(\left|y-z\right|\ge0\)
\(\Rightarrow\)\(\left|y-z\right|=0\)
\(\Leftrightarrow\)\(y-z=0\)
\(\Leftrightarrow\)\(y=z\)
Ta có: \(\left|x-z\right|< 2017\)
\(\Leftrightarrow\)\(\left|x-y\right|< 2017\)(thay \(z=y\))
\(\Leftrightarrow\)\(\left|x-y\right|< 2017< 2018\)
\(\Leftrightarrow\)\(\left|x-y\right|< 2018\)(đpcm)
Cảm ơn bạn. Bạn giỏi và tốt quá.May có bạn, ko mình cứ nghĩ cả ngày hôm nay cứ như thằng điên ý. Cái cảm giác mà ko giải đc bài toán nó khó chụi lắm.
Với \(a>0\) thì \(\left|a\right|+a=a+a=2a⋮2\)
Với \(a=0\) thì \(\left|a\right|+a=0+0=0⋮2\)
Với \(a< 0\) thì \(\left|a\right|+a=-a+a=0⋮2\)
Vậy với mọi a thì \(\left|a\right|+a⋮2\)
Ta có :\(\left|y-x\right|+\left|z-y\right|+\left|x-z\right|=2017^x+2018^x\)
\(\Rightarrow\left|y-z\right|+y-z+\left|z-y\right|+z-y+\left|x-z\right|+x-z=2017^x+2018^x\)
Vế trái chia hết cho 2 mà vế phải \(2018^x+2017^x\) không chia hết cho 2(vô lí)
Vậy không có x,y,z thỏa mãn
Ta có:
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\\ =\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|+\left|2018-x\right|\\ \ge\left|x-2015+2017-x\right|+\left|x-2016+2018-x\right|\\ =2+2\\ =4\)
Dấu bằng xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-2015\right)\left(2017-x\right)\ge0\\\left(x-2016\right)\left(2018-x\right)\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2015\le x\le2017\\2016\le x\le2018\end{matrix}\right.\\ \Leftrightarrow2016\le x\le2017\)
Ta có :
M = | x - 2015 | + | x - 2016 | + | x - 2017 |
M = | x - 2015 | + | x - 2016 | + | 2017 - x |
M = | x - 2015 | + | x - 2016 | + | 2017 - x | \(\ge\)| x - 2015 + 2017 - x | + | x - 2016 | = 2 + | x - 2016 | \(\ge\)2
Dấu = xảy ra \(\Leftrightarrow\)( x - 2015 )( 2017 - x )\(\ge\)0 ( loại ) và x - 2016 = 0 \(\Rightarrow\)x = 2016 ( chọn )
Vậy : Min M = 2 \(\Leftrightarrow\)x = 2016
GTNN (A)=3178+2017 khi x=0 ko co GTLN
GTLN(b)=2017 khi x=-3 va y=5 khong co GTNN
GTNN(c)=2018 khi x=-1 va y=5 khong co GTLN
neu can giai thich thi h
ko thi thoi
em cũng muốn làm phước giúp chị lắm chứ nhưng em mới ở lớp 6 thui
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\frac{1}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
A đạt giá trị nhỏ nhất <=> \(\frac{1}{\left|x-2017\right|+2019}\)Đạt giá trị lớn nhất <=> \(\left|x-2017\right|+2019\)Đạt giá trị bé nhất
Ta co: \(\left|x-2017\right|\ge0,\forall x\)
<=> \(\left|x-2017\right|+2019\ge0+2019=2019\)
Do đó: \(\left|x-2017\right|+2019\)có giá trị nhỏ nhất là 2019
'=" xảy ra <=> x-2017=0 <=> x=2017
Vậy min A=\(1-\frac{1}{2019}=\frac{2018}{2019}\)khi và chỉ khi x=2017
TH1: x<2017
A=2018-x-(2017-x)=2018-x-2017+x=1
TH2: 2017<=x<2018
A=2018-x-(x-2017)=-2x+4035
TH3: x>=2018
A=x-2018-x+2017=-1